Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambi...Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.展开更多
Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and contr...Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.展开更多
In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with th...In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.展开更多
Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrati...Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.展开更多
Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However a...Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.展开更多
Mount Cameroon is a Plio-Quaternary volcanic massif, without a centralcrater, made up of more than 140 pyroclastic cones. It is one of theactive volcanoes of the Cameroon Volcanic Line. Mount Cameroon meltinclusions a...Mount Cameroon is a Plio-Quaternary volcanic massif, without a centralcrater, made up of more than 140 pyroclastic cones. It is one of theactive volcanoes of the Cameroon Volcanic Line. Mount Cameroon meltinclusions are found in microdroplets trapped in the early minerals (olivines)from the pyroclastic products. The analysis of these melt inclusions allowedus to find primitive liquids compared to lavas. Major elements study ofthe magmatic inclusions, trapped in the most magnesian olivines (Mg#84-86) of Mount Cameroon revealed “primitive” liquids of basanite and alkalibasalt type with variable composition compared to the much more uniformbasalts of the magmatic series of Mount Cameroon. The study of thesetrapped liquids shows that: (1) the original primitive lavas did not undergothe process of evolution by FC, but rather underwent fundamentally (orexclusively) the process of partial melting;(2) the emitted lavas, evolvedessentially by FC;(3) the variations in the trace element contents of theprimitive liquids directly reflect a variation in the rate of partial melting ofa homogeneous mantelic source. The very high La/Yb ratios of the MountCameroon melt inclusions (> 20) characterize a garnet lherzolite source.Spectra of the melt inclusions show a negative anomaly or depletion in K,Rb and Ba as those of HIMU. The “primitive” liquids and lavas of MountCameroon represent a co-genetic sequence formed by varying degrees ofpartial melting of a source considered as homogeneous.展开更多
This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in d...This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.展开更多
基金supported partially by the 973 Program under the Grant 2012CB316100
文摘Large-scale array aided beamforming improves the spectral efficiency(SE) as a benefit of high angular resolution.When dual-beam downlink beamforming is applied to the train moving towards cell edge,the inter-beam ambiguity(IBA) increases as the directional difference between beams becomes smaller.An adaptive antenna activation based beamforming scheme was proposed to mitigate IBA.In the district near the base station(BS),all antenna elements(AEs) were activated to generate two beams.As the distance from the train to the BS increased,only the minimum number of AEs satisfying the resolution criterion would be activated.At the cell edge,one beam was switched off due to intolerable IBA.The proposed scheme can achieve SE gain to the non-adaptive scheme and show more robustness against the direction-of-arrival(DOA) estimation error.
基金the National Natural Science Foundation of China(Grant Nos.12102252 and 12172214)Natural Science Foundation of Chongqing(Grant No.CSTB2023NSCQ-MSX0761).
文摘Large-scale space membrane antennas have significant potential in satellite communication,space-based early warning,and Earth observation.Because of their large size and high flexibility,the dynamic analysis and control of membrane antenna are challenging.To maintain the working performance of the antenna,the pointing and surface accuracies must be strictly maintained.Therefore,the accurate dynamic modeling and effective active control of large-scale space membrane antennas have great theoretical significance and practical value,and have attracted considerable interest in recent years.This paper reviews the dynamics and active control of large-scale space membrane antennas.First,the development and status of large-scale space membrane antennas are summarized.Subsequently,the key problems in the dynamics and active control of large membrane antennas,including the dynamics of wrinkled membranes,large-amplitude nonlinear vibration,nonlinear model reduction,rigid-flexible-thermal coupling dynamic modeling,on-orbit modal parameter identification,active vibration control,and wave-based vibration control,are discussed in detail.Finally,the research outlook and future trends are presented.
基金supported by the National Natural Science Foundation of China under Grant 41775073
文摘In late July and early August 2018,Northeast China suffered from extremely high temperatures,with the maxium temperature anomaly exceeding 6°C.In this study,the large-scale circulation features associated with this heat wave over Northeast China are analyzed using station temperature data and NCEP–NCAR reanalysis data.The results indicate that strong anomalous positive geopotential height centers existed from the lower to upper levels over Northeast China,and the related downward motions were directly responsible for the extreme high-temperature anomalies.The northwestward shift of the western Pacific subtropical high(WPSH)and the northeastward shift of the South Asian high concurrently reinforced the geopotential height anomalies and descending flow over Northeast China.In addition,an anomalous Pacific–Japan pattern in the lower troposphere led to the northwestward shift of the WPSH,jointly favoring the anomalous geopotential height over Northeast China.Two wave trains emanating from the Atlantic region propagated eastwards along high latitudes and midlatitudes,respectively,and converged over Northeast China,leading to the enhancement of the geopotential height anomalies.
基金supported by National Natural Science Foundation of China (No.50475112)National Hi-Tech Research and Development Program of China (863 Program,No.2006AA110112).
文摘Aiming at providing with high-load capability in active vibration control of large-scale rotor system, a new type of active actuator to simultaneously reduce the dangers of low frequency flexural and torsional vibrations is designed. The actuator employs electro-hydraulic system and can provide a high and circumferential load. To initialize new research, the characteristics of various kinds of active actuators to control rotor shaft vibration are briefly introduced. The purpose of this paper is to introduce the preliminary results via presenting the structure, functions and operating principles, in particular, the working process of the electro-hydraulic system of the new actuator which includes a set of high speed electromagnetic valves and a series of sloping cone-shaped openings, and presenting the transmission relationships among the control parameters from control signals into the valves to active load onto shaft. The course of the work is dynamic, and a series of spatial forces and moments are put on the shaft to get an external resultant force to reduce excitations that induce vibration of shafts. By checking states of vibration, the actuator can control the impulse width and the interval of injection time for applying different control force to a vibration shaft in two circumference directions through the regulating action of a set of combination directional control valves. The results from simulating analysis and experiment show evidence of that this design can satisfy the case of active process of decreasing of flexural and torsional vibrations.
基金supported by National Key Basic Research Program of China (973 program) under Grant No.2007CB310703Funds for Creative Research Groups of China under Grant No.60821001+1 种基金National Natural Science Foundation of China under Grant No. 60973108National S&T Major Project under Grant No.2011ZX03005-004-02
文摘Fault diagnosis on large-scale and complex networks is a challenging task, as it requires efficient and accurate inference from huge data volumes. Active probing is a cost-efficient tool for fault diagnosis. However almost all existing probing-based techniques face the following problems: 1) performing inaccurately in noisy networks; 2) generating additional traffic to the network; 3) high cost computation. To address these problems, we propose an efficient probe selection algorithm for fault diagnosis based on Bayesian network. Moreover, two approaches which could significantly reduce the computational complexity of the probe selection process are provided. Finally, we implement the new proposed algorithm and a former representative probing-based algorithm (BPEA algorithm) on different settings of networks. The results show that, the new algorithm performs much faster than BPEA does without sacrificing the diagnostic quality, especially in large, noisy and multiple-fault networks.
文摘Mount Cameroon is a Plio-Quaternary volcanic massif, without a centralcrater, made up of more than 140 pyroclastic cones. It is one of theactive volcanoes of the Cameroon Volcanic Line. Mount Cameroon meltinclusions are found in microdroplets trapped in the early minerals (olivines)from the pyroclastic products. The analysis of these melt inclusions allowedus to find primitive liquids compared to lavas. Major elements study ofthe magmatic inclusions, trapped in the most magnesian olivines (Mg#84-86) of Mount Cameroon revealed “primitive” liquids of basanite and alkalibasalt type with variable composition compared to the much more uniformbasalts of the magmatic series of Mount Cameroon. The study of thesetrapped liquids shows that: (1) the original primitive lavas did not undergothe process of evolution by FC, but rather underwent fundamentally (orexclusively) the process of partial melting;(2) the emitted lavas, evolvedessentially by FC;(3) the variations in the trace element contents of theprimitive liquids directly reflect a variation in the rate of partial melting ofa homogeneous mantelic source. The very high La/Yb ratios of the MountCameroon melt inclusions (> 20) characterize a garnet lherzolite source.Spectra of the melt inclusions show a negative anomaly or depletion in K,Rb and Ba as those of HIMU. The “primitive” liquids and lavas of MountCameroon represent a co-genetic sequence formed by varying degrees ofpartial melting of a source considered as homogeneous.
基金supported in part by National Natural Science Foundation of China(No.52007123).
文摘This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.