This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a...This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.展开更多
Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress r...Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.展开更多
Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for rese...Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.展开更多
Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example t...Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.展开更多
Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbin...Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.展开更多
With the rapid development of Peer-to-Peer(P2P) technology,IPTV applications based on that have received more and more attention from both industry and academia. Several applications using the data-driven mesh-pull ar...With the rapid development of Peer-to-Peer(P2P) technology,IPTV applications based on that have received more and more attention from both industry and academia. Several applications using the data-driven mesh-pull architectures raised and gained great success commercially. At present,PPLive system is one of the most popular instances of IPTV applications which attract a large number of users from across the globe. At the same time,however,the dramatic rise in popularity makes it more likely to become a vulnerable target. In this paper,we propose an effective measurement architecture,which is based on the peer's nature not only receiving polluted video chunks but also forwarding those to other peers,to measure the video streaming pollution attack and then use a dedicated crawler of PPLive developed by us to evaluate the impact of pollution in P2P live streaming. Specifically,the results show that a single polluter is capable of compromising all the system and its destructiveness is severe.展开更多
In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the...In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the factors influencing the accuracy of roller profile online measurement were analyzed in detail and error compensation analysis of system was accordingly presented. In order to reduce count error, field program gate array(FPGA) was introduced and a highprecision data acquisition system was designed based on digital phase-shift technology. Experiments indicate that the standard deviation of measure data was 7.27 μm, which showed the feasibility and validity of the proposed method, and realized the roll profile measurement with high precision.展开更多
A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 ...A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 m/s to 2500 m/s) can be measured in the HL-1M tokamak fueling experiments. By analyzing photographs and the conditions of frozen pellets (including gas supply, gas replenishment, temperature controlling etc), the pellet-freezing technology is summarized in the paper.展开更多
The performance measurement of enterprise technology alliances is complex.In this article,evaluation mechanism of entropy has been applied to it.Above all,performance connotation of enterprise technology alliance is d...The performance measurement of enterprise technology alliances is complex.In this article,evaluation mechanism of entropy has been applied to it.Above all,performance connotation of enterprise technology alliance is defined from the aspect of self-organizatlon theory.Then,on dynamic and systerna-tical view,an entropy-based overall performance measurement model for technology alliance is established,using its life-cycle as the principal line,which includes initial condition evaluation,process e- valuation as well as benefit evaluation.Finally,a case study is carried out to the demonstration of that model.The author believes that an improved performance measurement model based on alliance life-cycle would be practicability to alliance.展开更多
In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surem...In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.展开更多
3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body...3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.展开更多
Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetoot...Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetooth offers users a quick and easy way to share data files over a wireless network. Traffic engineers and transportation engineering researchers have utilized the potential opportunities that exist with Bluetooth and have implemented this technology into traffic monitoring techniques. To gain a better understanding of Bluetooth sensors and how they work, a comprehensive literature search was conducted. Twenty-five articles were studied regarding case studies of Bluetooth sensor implementation for travel time measurement. Besides reviewing the literature and previous case studies, three new case studies in the State of Delaware, USA, were also conducted and carefully analyzed. The benefits and drawbacks associated with Bluetooth technology for travel time measurements have been identified in this paper. The overall conclusion of the authors is Bluetooth alone and by itself is not a proper technology for travel time measurements. More studies need to be conducted on the accuracy and overall application, before one can confidently utilize the Bluetooth technology for travel time measurements.展开更多
Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital wer...Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the展开更多
Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as temp...Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established.展开更多
Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, ...Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.展开更多
Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban tran...Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.展开更多
In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dy...In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.展开更多
Ensuring reliability and traceability of the unit of absorbed dose of intense photon and electron radiation, used in radiation technologies in industry, is based on the creation of a system of sample measures and meth...Ensuring reliability and traceability of the unit of absorbed dose of intense photon and electron radiation, used in radiation technologies in industry, is based on the creation of a system of sample measures and methods of transmission with minimal loss of dimensional accuracy of the unit of absorbed dose from the sample tools to working dosimeters and is a necessary basis of yield growth, of increase of labour productivity and the introduction of innovative products. The measuring capabilities of the State primary special standard of power unit of absorbed dose of intensity photon, electron and beta radiation for radiation technologies and of the standards of the absorbed dose of photon and electron radiation, used for radiation monitoring of radiation pro- cesses.展开更多
The study was carried out to improve farmers’ awareness, enhance the adoption of full package sorghum production technologies. The large-scale demonstration was implemented at Gololcha woreda of Arsi zone for one yea...The study was carried out to improve farmers’ awareness, enhance the adoption of full package sorghum production technologies. The large-scale demonstration was implemented at Gololcha woreda of Arsi zone for one year (2019/2020) using Melkam variety. The demonstration was implemented in three kebeles and a total of 100 hectares of land was covered by participating 117 household heads (farmers) out of which 12 of them were women-headed. In the demonstration farmers contributed a land size of 0.25 hectares (the minimum) and 2 hectares of land (maximum). Totally, from the demonstration 4030 quintals of sorghum were harvested with 42.3 quintals per hectare average productivity. The yield obtained by farmers practices w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> 18.23 q</span><span style="font-family:""><span style="font-family:Verdana;">·ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> which is lower as compared to the average yield obtained by large scale demonstration. The technology gap (TG) was 15.70 q·ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> which indicated that technologies have not been adopted. Extension gap was 24.07 q·ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> and this result indicated that the extension approach should be </span></span><span style="font-family:Verdana;">more </span><span style="font-family:Verdana;">strengthen</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;">. It has been ascertained that </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Melkam</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> variety is the best fitted variety and promotion of improved sorghum technologies via large scale demonstration has show</span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;"> a considerable yield increment as compared to farmers practices. According to the farmers’ trait preference, Melkam variety was preferred by farmers because of its high yielding, consumption quality, early maturity, palatability, and drought-tolerant traits respectively. For sustainable production of improved sorghum technologies, the seed system should be taken into consideration to deliver the seed supply for the entire sorghum producers.展开更多
With the global economic turmoil and the changes in Chinese economic pol- icies in 2008,small,and medium-sized enterprises(SMEs)have all felt the early-coming of a"cold season".They have been undergoing extr...With the global economic turmoil and the changes in Chinese economic pol- icies in 2008,small,and medium-sized enterprises(SMEs)have all felt the early-coming of a"cold season".They have been undergoing extreme dif- ficulties in doing businesses due to a series of factors including展开更多
基金The 2023 Guangxi University Young and Middle-Aged Teachers’Scientific Research Basic Ability Improvement Project“Research on Seismic Performance of Prefabricated CFST Column-SRC Beam Composite Joints”(2023KY1204)The 2023 Guangxi Vocational Education Teaching Reform Research Project“Research and Practice on the Cultivation of Digital Talents in Prefabricated Buildings in the Context of Deepening the Integration of Industry and Education”(GXGZJG2023B052)The 2022 Guangxi Polytechnic of Construction School-Level Teaching Innovation Team Project“Prefabricated and Intelligent Teaching Innovation Team”(Gui Jian Yuan Ren[2022]No.15)。
文摘This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses.
基金funding support from the National Natural Science Foundation of China(Grant Nos.52125903 and 52209149).
文摘Stress measurement plays a crucial role in geomechanics and rock engineering,especially for the design and construction of large-scale rock projects.This paper presents a novel method,based on the traditional stress relief approach,for indirectly measuring rock stress using optical techniques.The proposed method allows for the acquisition of full-field strain evolution on the borehole’s inner wall before and after disturbance,facilitating the determination of three-dimensional(3D)stress information at multiple points within a single borehole.The study focuses on presenting the method’s theoretical framework,laboratory validation results,and equipment design conception.The theoretical framework comprises three key components:the optical imaging method of the borehole wall,the digital image correlation(DIC)method,and the stress calculation procedure.Laboratory validation tests investigate strain field distribution on the borehole wall under varying stress conditions,with stress results derived from DIC strain data.Remarkably,the optical method demonstrates better measurement accuracy during the unloading stage compared to conventional strain gauge methods.At relatively high stress levels,the optical method demonstrates a relative error of less than 7%and an absolute error within 0.5 MPa.Furthermore,a comparative analysis between the optical method and the conventional contact resistance strain gauge method highlights the optical method’s enhanced accuracy and stability,particularly during the unloading stage.The proposed optical stress measurement device represents a pioneering effort in the application of DIC technology to rock engineering,highlighting its potential to advance stress measurement techniques in the field.
文摘Background A task assigned to space exploration satellites involves detecting the physical environment within a certain space.However,space detection data are complex and abstract.These data are not conducive for researchers'visual perceptions of the evolution and interaction of events in the space environment.Methods A time-series dynamic data sampling method for large-scale space was proposed for sample detection data in space and time,and the corresponding relationships between data location features and other attribute features were established.A tone-mapping method based on statistical histogram equalization was proposed and applied to the final attribute feature data.The visualization process is optimized for rendering by merging materials,reducing the number of patches,and performing other operations.Results The results of sampling,feature extraction,and uniform visualization of the detection data of complex types,long duration spans,and uneven spatial distributions were obtained.The real-time visualization of large-scale spatial structures using augmented reality devices,particularly low-performance devices,was also investigated.Conclusions The proposed visualization system can reconstruct the three-dimensional structure of a large-scale space,express the structure and changes in the spatial environment using augmented reality,and assist in intuitively discovering spatial environmental events and evolutionary rules.
文摘Deep foundation pit excavation is a basic and key step involved in modern building construction.In order to ensure the construction quality and safety of deep foundation pits,this paper takes a project as an example to analyze deep foundation pit excavation technology,including the nature of this construction project,the main technical measures in the construction of deep foundation pit,and the analysis of the safety risk prevention and control measures.The purpose of this analysis is to provide scientific reference for the construction quality and safety of deep foundation pits.
文摘Utilization of wind energy is a promising way to generate power,and wind turbine blades play a key role in collecting the wind energy effectively.This paper attempts to measure the deformation parameter of wind turbine blades in mechanics experiments using a videometric method. In view that the blades experience small buckling deformation and large integral deformation simultaneously, we proposed a parallel network measurement(PNM) method including the key techniques such as camera network construction,camera calibration,distortion correction,the semi-automatic high-precision extraction of targets,coordinate systems unification,and bundle adjustment,etc. The relatively convenient construction method of the measuring system can provide an abundant measuring content,a wide measuring range and post processing.The experimental results show that the accuracy of the integral deformation measurement is higher than 0.5 mm and that of the buckling deformation measurement higher than 0.1mm.
基金supported by the National 973 Key Basic Research Program under grant JG2008031
文摘With the rapid development of Peer-to-Peer(P2P) technology,IPTV applications based on that have received more and more attention from both industry and academia. Several applications using the data-driven mesh-pull architectures raised and gained great success commercially. At present,PPLive system is one of the most popular instances of IPTV applications which attract a large number of users from across the globe. At the same time,however,the dramatic rise in popularity makes it more likely to become a vulnerable target. In this paper,we propose an effective measurement architecture,which is based on the peer's nature not only receiving polluted video chunks but also forwarding those to other peers,to measure the video streaming pollution attack and then use a dedicated crawler of PPLive developed by us to evaluate the impact of pollution in P2P live streaming. Specifically,the results show that a single polluter is capable of compromising all the system and its destructiveness is severe.
文摘In order to meet the high precision requirement of wide steel strip in industry field, a novel online measurement of roller profile based on sonic circulation and pulse-echo technology was introduced. All kinds of the factors influencing the accuracy of roller profile online measurement were analyzed in detail and error compensation analysis of system was accordingly presented. In order to reduce count error, field program gate array(FPGA) was introduced and a highprecision data acquisition system was designed based on digital phase-shift technology. Experiments indicate that the standard deviation of measure data was 7.27 μm, which showed the feasibility and validity of the proposed method, and realized the roll profile measurement with high precision.
文摘A measuring system for high-speed hydrogen ice pellet was introduced in this paper and the photographing of flying pellet taken therein. With the system, a pellet (minimum size of φ 0.3 mm) velocity (ranging from 50 m/s to 2500 m/s) can be measured in the HL-1M tokamak fueling experiments. By analyzing photographs and the conditions of frozen pellets (including gas supply, gas replenishment, temperature controlling etc), the pellet-freezing technology is summarized in the paper.
文摘The performance measurement of enterprise technology alliances is complex.In this article,evaluation mechanism of entropy has been applied to it.Above all,performance connotation of enterprise technology alliance is defined from the aspect of self-organizatlon theory.Then,on dynamic and systerna-tical view,an entropy-based overall performance measurement model for technology alliance is established,using its life-cycle as the principal line,which includes initial condition evaluation,process e- valuation as well as benefit evaluation.Finally,a case study is carried out to the demonstration of that model.The author believes that an improved performance measurement model based on alliance life-cycle would be practicability to alliance.
文摘In this paper, we presented a method of using the l as er scanning triangulation for the non-contact 3D surface profile measurement of large-scale object. The characteristic of large-scale object non-contact mea surement is analyzed and the measuring method is proposed. Main factors influenc ing measurement precision such as image distortion and accurate designation of s peckle center are analyzed and methods of solving these problems are proposed. W e designed a combined filter by which the pulse noise and the Gaussian noise of speckle image can be eliminated efficiently. Using the characteristic of intensi ty distribution of laser speckle image we proposed a new approximating method th at could locate the center of laser speckle image at sub-pixel. The auxiliary v ariables are set to linearize the relationship between the image displacement an d the distance, the accurate values of laser triangulation system parameters cou ld be calibrated accurately and the measuring precision is increased remarkabl y. Using the above techniques we designed a measuring system based on laser sc anning triangulation. The results of the experiment show that these methods can raise the measuring precision of large-scale 3D surface profile effectively.
基金item of significant subject construction in Shanghai
文摘3 - dimensional body measurement technology, the basis of developing high technology in industry, accelerates digital development of aplparel industry. This paper briefly introduces the history of 3 - dimensional body measurement technology, and recounts the principle and primary structure of some types of 3 - dimensional automatic body measurement system. With this understanding, it discusses prospect of 3- dimensional CAD and virtual technology used in apparel industry.
文摘Bluetooth technology emerged over twenty years ago and has continuously improved throughout the years to meet diverse and complex applications. Initially invented to replace the need for physical data cables, Bluetooth offers users a quick and easy way to share data files over a wireless network. Traffic engineers and transportation engineering researchers have utilized the potential opportunities that exist with Bluetooth and have implemented this technology into traffic monitoring techniques. To gain a better understanding of Bluetooth sensors and how they work, a comprehensive literature search was conducted. Twenty-five articles were studied regarding case studies of Bluetooth sensor implementation for travel time measurement. Besides reviewing the literature and previous case studies, three new case studies in the State of Delaware, USA, were also conducted and carefully analyzed. The benefits and drawbacks associated with Bluetooth technology for travel time measurements have been identified in this paper. The overall conclusion of the authors is Bluetooth alone and by itself is not a proper technology for travel time measurements. More studies need to be conducted on the accuracy and overall application, before one can confidently utilize the Bluetooth technology for travel time measurements.
文摘Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the
文摘Recently, the study on one-dimensional thermoelectric materials is getting more and more attention. For those one-dimensional thermoelectric materials with nanowire array structure fabricated with alumina film as template, its thickness is often in the range of 10 to several tens micrometers, and the conventional measurement cannot be used. The key difficulties of the thermoelectric performance measurement for nanowire array materials include two aspects: 1) How to heat the two sides of the specimen uniformly and keep the temperature difference constantly at the same time; 2) How to measure the temperature of the two sides of the specimen with the thickness of 10 to several tens micrometers. A new type heating and temperature measuring technology has been used, and it can be simply described as liquid heating and separate temperature measurement. According to this principle, a thermoelectric performance measurement system has been established.
文摘Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.
基金supported by Beijing Natural Science Foundation(J210001)Natural Science Foundation of Hebei Province(E2021210142)Tianjin Natural Science Foundation(21JCZXJC00160).
文摘Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology.
文摘In this paper, to meet the needs of studying work of dynamic mechanical properties of welded joint, the dynamic mechanical properties of welded joint were measured by means of SHPB(Split Hopkinson Pressure Bar).The dynamic mechanical property's curves of every part of welded joint were obtained. For studying the dynamic behavior of mechanical heterogeneity of welded joint, important data were offered. The method of test creates a new way of studying dynamic mechanical properties of welded joint.
文摘Ensuring reliability and traceability of the unit of absorbed dose of intense photon and electron radiation, used in radiation technologies in industry, is based on the creation of a system of sample measures and methods of transmission with minimal loss of dimensional accuracy of the unit of absorbed dose from the sample tools to working dosimeters and is a necessary basis of yield growth, of increase of labour productivity and the introduction of innovative products. The measuring capabilities of the State primary special standard of power unit of absorbed dose of intensity photon, electron and beta radiation for radiation technologies and of the standards of the absorbed dose of photon and electron radiation, used for radiation monitoring of radiation pro- cesses.
文摘The study was carried out to improve farmers’ awareness, enhance the adoption of full package sorghum production technologies. The large-scale demonstration was implemented at Gololcha woreda of Arsi zone for one year (2019/2020) using Melkam variety. The demonstration was implemented in three kebeles and a total of 100 hectares of land was covered by participating 117 household heads (farmers) out of which 12 of them were women-headed. In the demonstration farmers contributed a land size of 0.25 hectares (the minimum) and 2 hectares of land (maximum). Totally, from the demonstration 4030 quintals of sorghum were harvested with 42.3 quintals per hectare average productivity. The yield obtained by farmers practices w</span><span style="font-family:Verdana;">as</span><span style="font-family:Verdana;"> 18.23 q</span><span style="font-family:""><span style="font-family:Verdana;">·ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> which is lower as compared to the average yield obtained by large scale demonstration. The technology gap (TG) was 15.70 q·ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> which indicated that technologies have not been adopted. Extension gap was 24.07 q·ha</span><sup><span style="font-family:Verdana;">-1</span></sup><span style="font-family:Verdana;"> and this result indicated that the extension approach should be </span></span><span style="font-family:Verdana;">more </span><span style="font-family:Verdana;">strengthen</span><span style="font-family:Verdana;">ed</span><span style="font-family:Verdana;">. It has been ascertained that </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">Melkam</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> variety is the best fitted variety and promotion of improved sorghum technologies via large scale demonstration has show</span><span style="font-family:Verdana;">n</span><span style="font-family:Verdana;"> a considerable yield increment as compared to farmers practices. According to the farmers’ trait preference, Melkam variety was preferred by farmers because of its high yielding, consumption quality, early maturity, palatability, and drought-tolerant traits respectively. For sustainable production of improved sorghum technologies, the seed system should be taken into consideration to deliver the seed supply for the entire sorghum producers.
文摘With the global economic turmoil and the changes in Chinese economic pol- icies in 2008,small,and medium-sized enterprises(SMEs)have all felt the early-coming of a"cold season".They have been undergoing extreme dif- ficulties in doing businesses due to a series of factors including