期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A semantic vector map-based approach for aircraft positioning in GNSS/GPS denied large-scale environment
1
作者 Chenguang Ouyang Suxing Hu +6 位作者 Fengqi Long Shuai Shi Zhichao Yu Kaichun Zhao Zheng You Junyin Pi Bowen Xing 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期1-10,共10页
Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework... Accurate positioning is one of the essential requirements for numerous applications of remote sensing data,especially in the event of a noisy or unreliable satellite signal.Toward this end,we present a novel framework for aircraft geo-localization in a large range that only requires a downward-facing monocular camera,an altimeter,a compass,and an open-source Vector Map(VMAP).The algorithm combines the matching and particle filter methods.Shape vector and correlation between two building contour vectors are defined,and a coarse-to-fine building vector matching(CFBVM)method is proposed in the matching stage,for which the original matching results are described by the Gaussian mixture model(GMM).Subsequently,an improved resampling strategy is designed to reduce computing expenses with a huge number of initial particles,and a credibility indicator is designed to avoid location mistakes in the particle filter stage.An experimental evaluation of the approach based on flight data is provided.On a flight at a height of 0.2 km over a flight distance of 2 km,the aircraft is geo-localized in a reference map of 11,025 km~2using 0.09 km~2aerial images without any prior information.The absolute localization error is less than 10 m. 展开更多
关键词 large-scale positioning building vector matching Improved particle filter GPS-Denied Vector map
下载PDF
Application of water loop variable refrigerant flow air-conditioning system in large-scale buildings in northern China
2
作者 孙婷婷 倪龙 +1 位作者 姚杨 马最良 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期197-200,共4页
A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a va... A water loop variable refrigerant flow(WLVRF)air-conditioning system is designed to be applied in large-scale buildings in northern China.The system is energy saving and it is an integrated system consisting of a variable refrigerant flow(VRF)air-conditioning unit,a water loop and an air source heat pump.The water loop transports energy among different regions in the buildings instead of refrigerant pipes,decreasing the scale of the VRF air-conditioning unit and improving the performance.Previous models for refrigerants and building loads are cited in this investigation.Mathematical models of major equipment and other elements of the system are established using the lumped parameter method based on the DATAFIT software and the MATLAB software.The performance of the WLVRF system is simulated.The initial investments and the running costs are calculated based on the results of market research.Finally,a contrast is carried out between the WLVRF system and the traditional VRF system.The results show that the WLVRF system has a better working condition and lower running costs than the traditional VRF system. 展开更多
关键词 variable refrigerant flow air-conditioning system water loop large-scale building
下载PDF
Digital Application Objectives and Benefit Analysis of BIM Technology in Large-Scale Comprehensive Development Projects
3
作者 Chunhui Yang 《Journal of World Architecture》 2024年第5期24-28,共5页
This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a... This paper discusses the digital application and benefit analysis of building information model(BIM)technology in the large-scale comprehensive development project of the Guangxi headquarters base.The project covers a total area of 92,100 square meters,with a total construction area of 379,700 square meters,including a variety of architectural forms.Through three-dimensional modeling and simulation analysis,BIM technology significantly enhances the design quality and efficiency,shortens the design cycle by about 20%,and promotes the collaboration and integration of project management,improving the management efficiency by about 25%.During the construction phase,the collision detection and four-dimensional visual management functions of BIM technology have improved construction efficiency by about 15%and saved the cost by about 10%.In addition,BIM technology has promoted green building and sustainable development,achieved the dual improvement of technical and economic indicators and social and economic benefits,set an example for enterprises in digital transformation,and opened up new market businesses. 展开更多
关键词 building information model technology large-scale comprehensive development Digital application Benefit analysis
下载PDF
Generating hourly electricity demand data for large-scale single-family buildings by a decomposition-recombination method
4
作者 Mengjie Han Fatemeh Johari +1 位作者 Pei Huang Xingxing Zhang 《Energy and Built Environment》 2023年第4期418-431,共14页
Household electricity demand has substantial impacts on local grid operation,energy storage and the energy per-formance of buildings.Hourly demand data at district or urban level helps stakeholders understand the dema... Household electricity demand has substantial impacts on local grid operation,energy storage and the energy per-formance of buildings.Hourly demand data at district or urban level helps stakeholders understand the demand patterns from a granular time scale and provides robust evidence in energy management.However,such type of data is often expensive and time-consuming to collect,process and integrate.Decisions built upon smart meter data have to deal with challenges of privacy and security in the whole process.Incomplete data due to confiden-tiality concerns or system failure can further increase the difficulty of modeling and optimization.In addition,methods using historical data to make predictions can largely vary depending on data quality,local building envi-ronment,and dynamic factors.Considering these challenges,this paper proposes a statistical method to generate hourly electricity demand data for large-scale single-family buildings by decomposing time series data and recom-bining them into synthetics.The proposed method used public data to capture seasonality and the distribution of residuals that fulfill statistical characteristics.A reference building was used to provide empirical parameter settings and validations for the studied buildings.An illustrative case in a city of Sweden using only annual total demand was presented for deploying the proposed method.The results showed that the proposed method can mimic reality well and represent a high level of similarity to the real data.The average monthly error for the best month reached 15.9%and the best one was below 10%among 11 tested months.Less than 0.6%improper synthetic values were found in the studied region. 展开更多
关键词 Data generation Time series decomposition Hourly electricity demand large-scale buildings
原文传递
Online Energy Measure and Analysis System for Large-Scale Public Buildings
5
《Tsinghua Science and Technology》 SCIE EI CAS 2008年第1期34-34,共1页
Large-scale public buildings have high energy density, which on average consume 5 to 15 times more electricity than residential buildings. In Beijing, those public buildings account for about ten percent of the total ... Large-scale public buildings have high energy density, which on average consume 5 to 15 times more electricity than residential buildings. In Beijing, those public buildings account for about ten percent of the total building area, but their energy consumption (except heating) amounts to more than thirty percent of the total. Few electric meters are installed in those public buildings, however, making it more difficult to monitor how the energy is used. 展开更多
关键词 THAN MORE Online Energy Measure and Analysis System for large-scale Public buildings
原文传递
Daily power demand prediction for buildings at a large scale using a hybrid of physics-based model and generative adversarial network 被引量:2
6
作者 Chenlu Tian Yunyang Ye +3 位作者 Yingli Lou Wangda Zuo Guiqing Zhang Chengdong Li 《Building Simulation》 SCIE EI CSCD 2022年第9期1685-1701,共17页
Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on mo... Power demand prediction for buildings at a large scale is required for power grid operation.The bottom-up prediction method using physics-based models is popular,but has some limitations such as a heavy workload on model creation and long computing time.Top-down methods based on data driven models are fast,but less accurate.Considering the similarity of power demand patterns of single buildings and the superiority of generative adversarial network(GAN),this paper proposes a new method(E-GAN),which combines a physics-based model(EnergyPlus)and a data-driven model(GAN),to predict the daily power demand for buildings at a large scale.The new E-GAN method selects a small number of typical buildings and utilizes EnergyPlus models to predict their power demands.Utilizing the prediction for those typical buildings,the GAN then is adopted to forecast the power demands of a large number of buildings.To verify the proposed method,the E-GAN is used to predict 24-hour power demands for a set of residential buildings.The results show that(1)4.3%of physics-based models in each building category are required to ensure the prediction accuracy;(2)compared with the physics-based model,the E-GAN can predict power demand accurately with only 5%error(measured by mean absolute percentage error,MAPE)while using only approximately 9%of the computing time;and(3)compared with data-driven models(e.g.,support vector regression,extreme learning machine,and polynomial regression model),E-GAN demonstrates at least 60%reduction in prediction error measured by MAPE. 展开更多
关键词 large-scale simulation power demand generative adversarial networks building energy model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部