Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as...Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells.展开更多
The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrat...The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.展开更多
L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for...L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.展开更多
Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon m...Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon materials,distinguished by their eco-friendliness and consistent performance,stand as a pivotal solution to this predicament.Researchers have made significant strides in the integration of porous carbon materials derived from biomass into battery systems.Nevertheless,these materials face issues such as limited efficiency,modest yields,and a complex fabrication process.This paper endeavors to summarize the recent advancements in the utilization of biomass-derived carbon materials within the realm of batteries,offering a comprehensive examination of their battery performance from three distinct perspectives:synthesis,structure,and application.We posit that composite materials composed of biomass-derived carbon align with the trajectory of future development and present extensive potential for application.Ultimately,we will expound upon our profound outlook regarding the furtherance of biomass-derived carbon materials.展开更多
The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and...The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2.展开更多
A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: ...A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results.展开更多
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ...Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.展开更多
For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)...For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries.展开更多
The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon ele...The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.展开更多
A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste ele...A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). The experimental conditions of the working procedure were optimized. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.61 V, corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode. The detection limit of Sc^(3+) is 1.0×10^(-10) mol·L^(-1) for 3 min of accumulation time. The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.展开更多
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no ...Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems,supporting electrolytes and pH using differential paise,square-wave and cyclic voltammetry.Based on its reduction behavior...Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems,supporting electrolytes and pH using differential paise,square-wave and cyclic voltammetry.Based on its reduction behavior,a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage.Three welldefined peaks were observed in 0.1% SLS,Britton-Robinson (BR) buffer of pH 2.5.The effect of surfaetants like sodium lauryl sulfate (SLS),cetyl trimethyl ammonium bromide (CTAB) and Tween 20 was studied.Among these surfactants SLS showed significant enhancement in reduction peak.The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coetfficient of 0.99.展开更多
The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great break...The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.展开更多
Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with...Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.展开更多
A new sensitive adsorptive voltammetric method was described for the determination of zirconium at a carbon paste electrode (CPE) in the presence of alizarin complexone (ALC). Optimal analytical conditions are: 1.0?0...A new sensitive adsorptive voltammetric method was described for the determination of zirconium at a carbon paste electrode (CPE) in the presence of alizarin complexone (ALC). Optimal analytical conditions are: 1.0?0-6 or 5.0?0-7 mol/L ALC, 0. 20 mol/L HAC-NaAc (pH 4.3), accumulation for 60 s at 0 V (vs. SCE), and linear scanning from 0 V to 1.0 V at 250 mV/s. The peak potential of the complex is at 0.81 V. By using a model JP-303 polarographic analyzer, 2.0?0-10 mol/L (S/N=3) zirconium can be detected with a 90 s accumulation, when the 2nd-order derivative linear sweep technique is used, and the linear range is 6.0?0-10-2.0?0-8 mol/L (5.0?0-7 mol/L ALC) and 2.0?0-8-2.0?0-7 mol/L (1.0?0-6 mol/L ALC), respectively. The developed method was applied to the determination of trace zirconium in the ore samples with satisfactory results.展开更多
A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additio...A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated using K-rich pomelo peel(PP)as the carbon source,which possesses a high electric conductivity where abundant functional hetero-metal atoms are doped into the carbon framework that playing the role of catalytic graphitization.The K^+that exists within the biomass can induce self-activation during pyrolysis apart from the activating gases during the pyrolysis process.The resulting electrocatalyst of PP-850(PP was pyrolyzed at 850°C in an N_2atmosphere)with abundant heteroatoms possesses a higher power conversion efficiency(PCE)of 7.81%as the counter electrode(CE)of dye-sensitized solar cells(DSCs)compared with the CEs calcinated at other temperatures and a similar PCE with Pt counterpart(8.24%)based on the liquid I_3^-/I^-electrolyte.The better electrocatalytic performance is attributed to the synergistic effect between self-activation and the co-doping of nitrogen,sulfur and phosphorus all together in a carbon matrix.Due to the feasibility of large-scale production,rich heteroatom doping,the PP-derived carbon,which simplifies the procedure and decreases the cost,has a potential application for an alternative electrocatalyst for high-performance photovoltaic devices.展开更多
For the first time, sulfanilamide(SFD) was determined in otologic solution, human urine and serum by electroanalytical techniques on glassy carbon electrode(GCE). The cyclic voltammetry(CV) experiments showed an irrev...For the first time, sulfanilamide(SFD) was determined in otologic solution, human urine and serum by electroanalytical techniques on glassy carbon electrode(GCE). The cyclic voltammetry(CV) experiments showed an irreversible oxidation peak at t 1.06 V in 0.1 mol/L BRBS(p H ? 2.0) at 50 m V/s. Different voltammetric scan rates(from 10 to 250 m V/s) suggested that the oxidation of SFD on the GCE was a diffusioncontrolled process. Square-wave voltammetry(SWV) method under optimized conditions showed a linear response to SFD from 5.0 to 74.7 μmol/L(R ? 0.999) with detection and quantification limits of 0.92 and3.10 μmol/L, respectively. The developed SWV method showed better results for detection limit and linear range than the chronoamperometry method. It has been successfully applied to determine SFD concentration in pharmaceutical formulation, human urine and serum samples with recovery close to 100%.展开更多
The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hyd...The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.展开更多
基金supported by the National Natural Science Foundation of China(Nos.U21A20310,22278164,22122805,22308112)the Science and Technology Program of Guangzhou,China(No.2023A04J0665)China Postdoctoral Science Foundation(No.2023M741214)。
文摘Crystallization process determines the quality of perovskite films and the performances of resultant perovskite solar cells(PSCs).Dimethylamine oxalate has been proven as a multifunctional modulator,and is explored as an efficient additive in manipulating the crystallization process of CsPbI_(3) perovskite films.On one hand,oxalate serves as the precipitator that facilitates the nucleation process of intermediate.The larger size of intermediate is conductive to the larger size and smaller grain boundaries of resultant perovskite.On the other hand,in subsequent annealing process,the phase conversion and growth process of transient perovskite can be decelerated due to the strong interactions of oxalate with both dimethylamine cation(DMA^(+))and Pb^(2+).Due to the optimized crystallization kinetics,the morphology and quality of CsPbI_(3) perovskite films are comprehensively improved with lower defect concentrations,and charge recombination loss is effectively suppressed.Benefiting from the optimized crystal quality of perovskite films,the carbon electrode-based CsPbI_(3) PSCs exhibit a champion efficiency of 18.48%.This represents one of the highest levels among all hole transport layer-free inorganic perovskite solar cells.
基金supported by the National Research Foundation of Korea funded by the Ministry of Science and ICT (MSIT),Korea (NRF-2021R1C1C1009200 and 2023R1A2C3007358)supported by the Defense Challengeable Future Technology Program of the Agency for Defense Development,Republic of Koreasupported by Technology Innovation Program of the Korea Evaluation Institute of Industrial Technology (KEIT) (20016588)funded by Ministry of Trade,Industry and Energy (MOTIE).
文摘The successful utilization of an eco-friendly and biocompatible parylene-C substrate for high-performance solution-processed double-walled carbon nanotube(CNT)electrode-based perovskite solar cells(PSCs)was demonstrated.Through the use of a novel inversion transfer technique,vertical separation of the binders from the CNTs was induced,rendering a stronger p-doping effect and thereby a higher conductivity of the CNTs.The resulting foldable devices exhibited a power conversion efficiency of 18.11%,which is the highest reported among CNT transparent electrode-based PSCs to date,and withstood more than 10,000 folding cycles at a radius of 0.5 mm,demonstrating unprecedented mechanical stability.Furthermore,solar modules were fabricated using entirely laser scribing processes to assess the potential of the solution-processable nanocarbon electrode.Notably,this is the only one to be processed entirely by the laser scribing process and to be biocompatible as well as eco-friendly among the previously reported nonindium tin oxide-based perovskite solar modules.
文摘L-tryptophan is an essential amino acid for human health. Nanofibrillated cellulose (NFC) from marram grass (Ammophila arenaria) extracted from plants harvested in the center of Tunisia was used for the first time for the modification of a glassy carbon electrode (GCE), for the sensitive detection of L-tryptophan (Trp). After spectroscopic and morphological characterization of the extracted NFC, the GC electrode modification was monitored through cyclic voltammetry. The NFC-modified electrode exhibited good analytical performance in detecting Trp with a wide linear range between 7.5 × 10−4 mM and 10−2 mM, a detection limit of 0.2 µM, and a high sensitivity of 140.0 µA∙mM−1. Additionally, the NFC/GCE showed a good reproducibility, good selectivity versus other amino acids, uric acid, ascorbic acid, and good applicability to the detection of Trp in urine samples.
基金the University Synergy Innovation Program of Anhui Province(GXXT-2022-018)National Natural Science Foundation of China(22302052)+3 种基金Anhui Provincial Natural Science Foundation for Distinguished Young Scholar(2008085J26)Natural Science Foundation in University of Anhui Province(KJ2021ZD0119,2022AH040251 and 2023AH052190)Excellent Scientific Research and Innovation Team in University of Anhui Province(2022AH010096 and 2023AH010050)Startup Fund for Distinguished Scholars in Hefei University(20RC37)and Anhui Provincial Natural Science Foundation(2108085QB47).
文摘Recently,the challenges pertaining to the recycling of metal-based electrode materials and the resulting environmental pollution have impeded the advancement of battery technology.Consequently,biomass-derived carbon materials,distinguished by their eco-friendliness and consistent performance,stand as a pivotal solution to this predicament.Researchers have made significant strides in the integration of porous carbon materials derived from biomass into battery systems.Nevertheless,these materials face issues such as limited efficiency,modest yields,and a complex fabrication process.This paper endeavors to summarize the recent advancements in the utilization of biomass-derived carbon materials within the realm of batteries,offering a comprehensive examination of their battery performance from three distinct perspectives:synthesis,structure,and application.We posit that composite materials composed of biomass-derived carbon align with the trajectory of future development and present extensive potential for application.Ultimately,we will expound upon our profound outlook regarding the furtherance of biomass-derived carbon materials.
基金Projects (51272221,51072173,21203161) supported by the National Natural Science Foundation of ChinaProject (10CY005) supported by Industrial Project of Colleges and Universities of Hunan Province,China
文摘The hierarchically porous carbons (HPCs) were prepared by sol-gel selassembly technology in different surfactant concentrations and were used as the potential electrode for lithium oxygen batteries. The physical and electrochemical properties of the as-prepared HPCs were investigated by filed emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherm and galvanostatic charge/discharge. The results indicate that all of the HPCs mainly possess mesoporous structure with nearly similar pore size distribution. Using the HPCs as the electrode, a high discharge capacity for lithium oxygen battery can be achieved, and the discharge capacity increases with the specific surface area. Especially, the HPCs-3 oxygen electrode with CTAB concentration of 0.27 mol/L exhibits good capacity retention through controlling discharge depth to 800 mA·h/g and the highest discharge capacity of 2050 mA·h/g at a rate of 0.1 mA/cm2.
文摘A sensitive method is described for the determination of trace antimony based on the antimony-bromopyrogallol red (BPR) adsorption at a carbon paste electrode (CPE). Three steps were involved in the overall analysis: preconcentration,reduction and stripping. Optimal conditions were found to be an electrode containing 25% paraffin oil and 75% high purity graphite powder as working electrode;a 0.10 mol/L HCl solution containing 40 μmol/L BPR as accumulation medium;a 0.20 mol/L HCl solution as reduction and stripping electrolyte;accumulation time,150 s;reduction potential and time,-0.50 V,60 s;scan range from -0.50 to 0.20 V. Interferences by other ions were studied as well. The detection limit was found to be 0.5 nmol/L for 150 s preconcentration. The linear range was from 1.0 nmol/L to 0.50 μmol/L. Application of the proposed method to the determination of antimony in water and human hair samples gave good results.
基金supported by the Science and Technology Innovation Program of Hunan Province(2022WZ1012)the Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy(2020CB1007)the Natural Science Foundation of Guangzhou(202201020147)。
文摘Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture.
基金Financial support from National Key R&D Program of China(Grant No.2018YFB0104400)the National Natural Science Foundation of China(Grant Nos.11672341,11572002 and 51874019)+2 种基金Innovative Research Groups of the National Natural Science Foundation of China(Grant No.11521202)National Materials Genome Project(Grant No.2016YFB0700600)Beijing Natural Science Foundation(Grant Nos.16L00001 and 2182065).
文摘For addressing the critical problems in current collectors in the aluminium batteries,a variety of carbonbased current collectors,including carbon fiber textiles and three-dimensional(3D)biomass-derivative carbon(BDC)networks,are employed for serving as lightweight non-metal current collectors.The results indicate that all the carbon-based current collectors have electrochemical stability in the acidic electrolyte environments.In the assembled aluminium batteries with all-carbon positive electrodes,thermal annealing process on the carbon-based current collectors has substantially promoted the entire electrochemical energy storage performance.Additionally,both the structure configuration and chemical components of the current collectors have also great impact on the rate capability and cycling stability,implying that the 3D BDC networks are more favorable to offer promoted energy storage capability.Implication of the results from suggests that the carbon-based current collectors and all-carbon positive electrodes are able to deliver more advantages in energy storage behaviors in comparison with the traditional positive electrodes with metal Mo current collectors.Such novel strategy promises a new route for fabricating highperformance positive electrodes for stable advanced aluminium batteries.
文摘The paper describes a controllable layer-by-layer (LBL) self-assembly modification technique of multi-walled carbon nanotubes (MWNTs) and poly(diallyldimethylammonium chloride) (PDDA) towards glassy carbon electrode (GCE), Acetylcholinesterase (ACHE) was immobilized directly to the modified GCE by LBL self-assembly method, the activity value of AChE was detected by using i-t technique based on the modified Ellman method. Then the composition of carbaryl were detected by the enzyme electrode with 0.01U activity value and the detection limit of carbaryl is 10^- 12 g L ^-1 so the enzyme biosensor showed good properties for pesticides residue detection.
文摘A novel method was described for the determination of ultra trace amount of scandium based on the cathodic adsorptive voltammetry of the mix-polynuclear complex of scandium-calcium-alizarin red S at a carbon paste electrode (CPE). The 2nd-order derivative linear scan voltammograms of the adsorbed complex were recorded by model JP-303 polarographic analyzer from 0.0 to -1.0 V (vs. SCE). The experimental conditions of the working procedure were optimized. The results show that the complex can be adsorbed on the surface of the CPE, yielding one peak at -0.61 V, corresponding to the reduction of the alizarin red S in the mix-polynuclear complex at the electrode. The detection limit of Sc^(3+) is 1.0×10^(-10) mol·L^(-1) for 3 min of accumulation time. The procedure was successfully applied to the determination of trace amount of scandium in the sample ores.
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金supported by the Open Project Program of Jiangxi Engineering Research Center of Process and Equipment for New Energy,East China Institute of Technology(No.JXNE2015-14)Youth Foundation of Education Department of Hebei Province(No.QN2016183)the National Natural Science Foundation of China(No.51362002)
文摘Carbon cloth modified by hydrothermal treatment in ammonia water is developed as the positive electrode with high electrochemical performance for vanadium redox flow batteries. The SEM shows that the treatment has no obvious influence on the morphology of carbon cloth. XPS measurements indicate that the nitrogenous functional groups can be introduced on the surface of carbon cloth successfully. The electrochemical performance of V(IV)/V(V) redox couple on the prepared electrode is evaluated with cyclic voltammetry and linear sweep voltammetry measurements. The N-doped carbon cloth exhibits outstanding electrochemical activity and reversibility toward V(IV)/V(V) redox couple. The rate constant of V(IV)/V(V) redox reaction on carbon cloth can increase to 2.27 x 10(-4) cm/s from 1.47 x 10(-4) cm/s after nitrogen doping. The cell using N-doped carbon cloth as positive electrode has larger discharge capacity and higher energy efficiency compared with the cell using pristine carbon cloth. The average energy efficiency of the cell using N-doped carbon cloth for 50 cycles at 30 mA/cm(2) is 87.8%, 4.3% larger than that of the cell using pristine carbon cloth. It indicates that the N-doped carbon cloth has a promise application prospect in vanadium redox flow batteries. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
文摘Redox behavior of midazolam was studied at a glassy carbon electrode in various buffer systems,supporting electrolytes and pH using differential paise,square-wave and cyclic voltammetry.Based on its reduction behavior,a direct differential pulse voltammetric method has been developed and validated for the determination of midazolam in parenteral dosage.Three welldefined peaks were observed in 0.1% SLS,Britton-Robinson (BR) buffer of pH 2.5.The effect of surfaetants like sodium lauryl sulfate (SLS),cetyl trimethyl ammonium bromide (CTAB) and Tween 20 was studied.Among these surfactants SLS showed significant enhancement in reduction peak.The cathodic peak currents were directly proportional to the concentration of midazolam with correlation coetfficient of 0.99.
基金supported by the Programs of National 973 (2011CB935900)NSFC (51231003 and 21231005)+1 种基金111 Project (B12015)Tianjin High-Tech (10SYSYJC27600)
文摘The synthetic routes of porous carbons and the applications of the functional porous carbon-based composite electrode materials for lithium secondary batteries are reviewed. The synthetic methods have made great breakthroughs to control the pore size and volume, wall thickness, surface area, and connectivity of porous carbons, which result in the development of functional porous carbon-based composite electrode materials. The effects of porous carbons on the electrochemical properties are further discussed. The porous carbons as ideal matrixes to incorporate active materials make a great improvement on the electrochemical properties because of high surface area and pore volume, excellent electronic conductivity, and strong adsorption capacity. Large numbers of the composite electrode materials have been used for the devices of electrochemical energy conversion and storage, such as lithium-ion batteries (LIBs), Li-S batteries, and Li-O2 batteries. It is believed that functional porous carbon-based composite electrode materials will continuously contribute to the field of lithium secondary batteries.
文摘Carbon materials,including graphite,hard carbon,soft carbon,graphene,and carbon nanotubes,are widely used as high-performance negative electrodes for sodium-ion and potassium-ion batteries(SIBs and PIBs).Compared with other materials,carbon materials are abundant,low-cost,and environmentally friendly,and have excellent electrochemical properties,which make them especially suitable for negative electrode materials of SIBs and PIBs.Compared with traditional carbon materials,modifications of the morphology and size of nanomaterials represent effective strategies to improve the quality of electrode materials.Different nanostructures make different contributions toward improving the electrochemical performance of electrode materials,so the synthesis of nanomaterials is promising for controlling the morphology and size of electrode materials.This paper reviews the progress made and challenges in the use of carbon materials as negative electrode materials for SIBs and PIBs in recent years.The differences in Na+and K+storage mechanisms among different types of carbon materials are emphasized.
文摘A new sensitive adsorptive voltammetric method was described for the determination of zirconium at a carbon paste electrode (CPE) in the presence of alizarin complexone (ALC). Optimal analytical conditions are: 1.0?0-6 or 5.0?0-7 mol/L ALC, 0. 20 mol/L HAC-NaAc (pH 4.3), accumulation for 60 s at 0 V (vs. SCE), and linear scanning from 0 V to 1.0 V at 250 mV/s. The peak potential of the complex is at 0.81 V. By using a model JP-303 polarographic analyzer, 2.0?0-10 mol/L (S/N=3) zirconium can be detected with a 90 s accumulation, when the 2nd-order derivative linear sweep technique is used, and the linear range is 6.0?0-10-2.0?0-8 mol/L (5.0?0-7 mol/L ALC) and 2.0?0-8-2.0?0-7 mol/L (1.0?0-6 mol/L ALC), respectively. The developed method was applied to the determination of trace zirconium in the ore samples with satisfactory results.
基金financial assistance from the National Natural Science Foundation of China (Grant nos. 51402036 and 51773025)the International Science & Technology Cooperation Program of China (Grant no. 2013DFA51000)
文摘A facile template-free in situ self-activation approach for the multiple active components synergistically driven porous carbon was presented via a feasible annealing process.The biomass-derived carbon without additional activation reagents was fabricated using K-rich pomelo peel(PP)as the carbon source,which possesses a high electric conductivity where abundant functional hetero-metal atoms are doped into the carbon framework that playing the role of catalytic graphitization.The K^+that exists within the biomass can induce self-activation during pyrolysis apart from the activating gases during the pyrolysis process.The resulting electrocatalyst of PP-850(PP was pyrolyzed at 850°C in an N_2atmosphere)with abundant heteroatoms possesses a higher power conversion efficiency(PCE)of 7.81%as the counter electrode(CE)of dye-sensitized solar cells(DSCs)compared with the CEs calcinated at other temperatures and a similar PCE with Pt counterpart(8.24%)based on the liquid I_3^-/I^-electrolyte.The better electrocatalytic performance is attributed to the synergistic effect between self-activation and the co-doping of nitrogen,sulfur and phosphorus all together in a carbon matrix.Due to the feasibility of large-scale production,rich heteroatom doping,the PP-derived carbon,which simplifies the procedure and decreases the cost,has a potential application for an alternative electrocatalyst for high-performance photovoltaic devices.
基金UFESCNPq,CAPES(23068719374/2017-70)FAPES(54693900/2011,54694442/2011,60125730/2012,53671880/2011)for the financial support
文摘For the first time, sulfanilamide(SFD) was determined in otologic solution, human urine and serum by electroanalytical techniques on glassy carbon electrode(GCE). The cyclic voltammetry(CV) experiments showed an irreversible oxidation peak at t 1.06 V in 0.1 mol/L BRBS(p H ? 2.0) at 50 m V/s. Different voltammetric scan rates(from 10 to 250 m V/s) suggested that the oxidation of SFD on the GCE was a diffusioncontrolled process. Square-wave voltammetry(SWV) method under optimized conditions showed a linear response to SFD from 5.0 to 74.7 μmol/L(R ? 0.999) with detection and quantification limits of 0.92 and3.10 μmol/L, respectively. The developed SWV method showed better results for detection limit and linear range than the chronoamperometry method. It has been successfully applied to determine SFD concentration in pharmaceutical formulation, human urine and serum samples with recovery close to 100%.
文摘The electrochemical behavior of vitamin C(ascorbic acid or AA) is investigated on the surface of a carbon-paste electrode modified with TiO2 nanoparticles and 2,2'-(1,2 butanediylbis(nitriloethylidyne))-bis-hydroquinone(BBNBH).The prepared modified electrode showed an efficient catalytic role in the electrochemical oxidation of AA,leading to remarkable decrease in oxidation overpotential and enhancement of the kinetics of the electrode reaction.This modified electrode exhibits well-separated oxidation peaks for AA and uric acid(UA).The modified electrode is successfully applied for the accurate determination of AA in pharmaceutical preparations.