Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement trans...Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.展开更多
On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optic...On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optical principle of the sensor is explained, and the relation between the grating motion displacement and the phase shift of interference stripes is deduced. The improvement of the integral structure and the method of photoelectric signal processing are described in detail. With the software system based on the virtual instrument development platform Labwindows/CVI and other hardwares such as the precision displacement worktable, the surfaces of typical parts are measured and the characterization results are given. The sensor has wide measuring range and high resolution, its sensitivity and resolution being independent of the wavelength of the incident light. The vertical measuring range is 0-6 mm, and the vertical resolution is 0.005μm. The experimental results show that the sensor can be used to measure and characterize the surface topography parameters of the plane and curved surface.展开更多
In order to effectively control the stress and distortion which produced in welding process, the dynamic change laws of displacement field is the most important factor. The characteristics of the welding dynamic displ...In order to effectively control the stress and distortion which produced in welding process, the dynamic change laws of displacement field is the most important factor. The characteristics of the welding dynamic displacement field is high temperature, high strain velocity, thus ordinary methods such as resistance strain gauge or Moiré method can not be used for the measurement of the zone of high temperature. Speckle interference method has the merits of non-contact, resistance to the disturbance of impure lights, high accuracy of measurement (half of wavelength).The paper represents the measurement of dynamic displacement field of argon-arcspot welding, by which it shows that the method of speckle interference is feasible for the measurement of welding dynamic displacement.展开更多
A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, ...A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, high stability, and no limitation of the monochromaticity of laser. By circumventing the strong influence of atmospheric backscattering on the high sensitivity of target echo detection, high precision detection on backscatter density of laser by signal processing was achieved. Furthermore, the signal densities of various distances were extracted by time sampling and precise frequency control of digital circuit. Finally, the MLBM system including devices integrated of emitting and reviving equipments and program was obtained. Detection experiments showed that our system has high precision and the measurement error could be controlled within 5% to 10%.展开更多
The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and...The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and destructive.In contrast,the point laser displacement sensor,employing the optical triangle method,emerges as a promising device for assessing parts with variable curvature and highly reflective surfaces.Despite its benefits,high-density sampling by an innate frequency introduces challenges such as data redundancy and a poor signal-to-noise ratio,potentially affecting the efficiency and precision of subsequent data processing.To address these challenges,adjustable frequency data sampling has been developed for this sensor,allowing adaptive sampling for corrugated plate digitization.The process begins with surface digitization to extract discrete points,which are transformed into intersection curves using the B-spline fitting technique.Subsequently,dominant points are identified,considering multigeometric constraints for curvature and arch height.Finally,the sampling signal is adjusted based on the distribution information of dominant points.Comparative results indicate that the proposed method effectively minimizes redundant sampling without compromising the accurate capture of essential geometric features.展开更多
A 3D nano-displacement measurement method,where the difference in phase between the beams in a four-beam laser interference is changed,is proposed.Simulation results demonstrate that the variation of phase difference ...A 3D nano-displacement measurement method,where the difference in phase between the beams in a four-beam laser interference is changed,is proposed.Simulation results demonstrate that the variation of phase difference causes the deviation of the interference pattern in the laser interference system.Based on this theory,we design and build a four-beam laser interference system.The corner cube prism in the optical path is shifted,and the phase of the beam is changed by applying different voltages to a piezoelectric stage.The phase difference is obtained by analyzing the lattice pattern with subpixel precision,and then the displacement is determined by correlation operation.The experimental measurement results are consistent with the theoretical analysis,thereby verifying the feasibility of this measurement method.展开更多
Objective: To study the foveal displacement during the closure of idiopathic macular holes(MHs).Methods: Thirty-seven idiopathic MH patients treated by pars plana vitrectomy and internal limiting membrane peeling were...Objective: To study the foveal displacement during the closure of idiopathic macular holes(MHs).Methods: Thirty-seven idiopathic MH patients treated by pars plana vitrectomy and internal limiting membrane peeling were studied prospectively.Locations of MH center and foveal pit were measured by optic coherence tomography.Retinal displacement was observed using confocal scanning laser ophthalmoscopy.Results: A total of 40 eyes were included in this study and MHs were closed in 37 eyes(92.5%).The confocal scanning laser ophthalmoscopy showed that all of the retinal capillaries in the superior, inferior, nasal and temporal sides of the MHs moved toward the optic nerve head(ONH).The optic coherence tomography results showed that the mean nasal displacements of foveal pits were(102.9±61.2),(109.6±53.1), and(137.0±52.0) μm at 3, 6 and 12 months, respectively.And the mean vertical displacements were(55.9±49.4),(61.4±57.8) and(67.8±54.3) μm, respectively.Post-operative foveal pits were located in the nasal side of the MH centers.The extension of retina and nasal to the MH were in opposite directions: the nasal hole margin moved toward the MH, but the retina located closer to the ONH moved toward the ONH.The fellow eyes of three patients developed into idiopathic MH during the follow-up period and operations were performed for all of the three patients.Conclusion: Our results showed that center of macula does not move when an idiopathic MH develops, but it moves toward ONH during closure of hole; thus, new fovea is in nasal side of original fovea.展开更多
In order to achieve the accurate measurement of displacement, this Letter presents a self-mixing interference displacement measurement method suitable for the speckle effect. Because of the speckle effect, the amplitu...In order to achieve the accurate measurement of displacement, this Letter presents a self-mixing interference displacement measurement method suitable for the speckle effect. Because of the speckle effect, the amplitude of the self-mixing interference signal fluctuates greatly, which will affect the measurement accuracy of displacement. The ensemble empirical mode decomposition is used to process the interference signal, which can filter out high-frequency noise and low-frequency noise at the same time. The envelope of the self-mixing interference signal is extracted by Hilbert transform, and it is used to realize the normalization of the signal. Through a series of signal processing, the influence of speckle can be effectively reduced, and the self-mixing interference signal can be transformed into standard form. The displacement can be reconstructed by fringe counting and the interpolation method. The experimental results show that the method is successfully applied to the displacement measurement in the presence of speckle, which verifies the effectiveness and feasibility of the method.展开更多
An on-machine measuring(OMM)system with a laser displacement sensor(LDS)is designed for measuring free-form surfaces of hypersonic aircraft’s radomes.To improve the measurement accuracy of the OMM system,a novel Iter...An on-machine measuring(OMM)system with a laser displacement sensor(LDS)is designed for measuring free-form surfaces of hypersonic aircraft’s radomes.To improve the measurement accuracy of the OMM system,a novel Iteratively Automatic machine learning Boosted hand-eye Calibration(IABC)method is proposed.Both the hand-eye relationship and LDS measurement errors can be calibrated in one calibration process without any hardware changes via IABC.Firstly,a new objective function is derived,containing analytical parameters of the handeye relationship and LDS errors.Then,a hybrid calibration model composed of two kernels is proposed to solve the objective function.One kernel is the analytical kernel designed for solving analytical parameters.Another kernel is the automatic machine learning(AutoML)kernel designed to model LDS errors.The two kernels are connected with stepwise iterations to find the best calibration results.Compared with traditional methods,hand-eye experiments show that IABC reduces the calibration RMSE by about 50%.Verification experiments show that IABC reduces the measurement deviations by about 25%-50%and RMSEs within 40%.Even when the training data are obviously less than the test data,IABC performs well.Experiments demonstrate that IABC is more accurate than traditional hand-eye methods.展开更多
A method was proposed to analyze the influences of the non-ideal spectroscopic performance of optical components and orientation errors of a laser tracing measurement optical system on the tracing measurement performa...A method was proposed to analyze the influences of the non-ideal spectroscopic performance of optical components and orientation errors of a laser tracing measurement optical system on the tracing measurement performance.A comprehensive model of the interference fringe contrast based on the laser tracing system s measurement principle was established in this study.Simulation results based on ZEMAX verified the model.According to the simulation results,the placement angle of the analyzer had a direct influence on the interference fringe contrast.When the angle of the polarized light to the analyzer’s transmission axis increased from 65°to 85°,each contrast of the four-way interference fringes decreased from 0.9996 to 0.3528,the interference fringe contrast is decreased by 65%.Under the split ratio of beam splitters in the interference part(BS 1)of 5∶5,when the splitting ratio of BS 2 changed from 2∶8 to 8∶2,the fringe contrast of the interference signals received by the photodetectors increased,but the injection light intensity onto the PSD reflected by BS 2 decreased.The significant influence of the tracing performance was verified by the experiments.When splitting ratio of BS 2 increased,the contrast of the interference fringes increased.Due to the weakening of the incident light intensity of the PSD caused by the change of BS 2 splitting ratio,the response time of the tracing system is increased by 23.7 ms.As a result,the tracing performance of the laser tracing measurement optical system was degraded.An important theoretical basis was provided to evaluate and improve the accuracy and reliability of laser tracing measurement systems.展开更多
In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe...In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe head,the frame of a coordinate measuring machine(CMM),etc.As the output of the laser sensor directly obtained possesses the 1D length of the laser beam,it needs to determine the unit direction vector of the laser beam denoted as(l,m,n)by calibration so as to convert the 1D values into 3D coordinates of target points.Therefore,an extrinsic calibration method based on a standard sphere is proposed to accomplish this task in the paper.During the calibration procedure,the laser sensor moves along with the motion of the CMM and gathers the required data on the spherical surface.Then,both the output of the laser sensor and the grating readings of the CMM are substituted into the constraint equation of the spherical surface,in which an over-determined nonlinear equation group containing unknown parameters is established.For the purpose of solving the equation group,a method based on non-linear least squares optimization is put forward.Finally,the system after calibration is utilized to measure the diameter of a metallic sphere 10 times from different orientations to verify the calibration accuracy.In the experiment,the errors between the measured results and the true values are all smaller than 0.03 mm,which manifests the validity and practicality of the extrinsic calibration method presented in the paper.展开更多
Applying the Fourier transform to the wave equations of elastic medium at its surface a laser pulse line source is acted, the integral representations of solutions are obtained. Displacement waveforms are calculated n...Applying the Fourier transform to the wave equations of elastic medium at its surface a laser pulse line source is acted, the integral representations of solutions are obtained. Displacement waveforms are calculated numerically by using double FFT. The calculated results include the displacements of the elastic half space of Aluminum medium, and epicenter and off-epicenter of an Aluminum plate. The two exciting sources of thermoelastic and ablating generation are considered respectively. The experiment was made on the Aluminum medium with a Nd:YAG laser and the normal displacement signals are detected by a laser interferometer. The numerical results are quite in agreement with experiments.展开更多
The fiber-optic displacement sensor based on the distributed Bragg reflector fiber laser is proposed, that is, the fiber laser cavity is attached to the measured object, when the measured object is stretched or contra...The fiber-optic displacement sensor based on the distributed Bragg reflector fiber laser is proposed, that is, the fiber laser cavity is attached to the measured object, when the measured object is stretched or contracted, and the length of the fiber laser cavity is also stretched or contracted accordingly. In view of the nonlinearity of the fiber-optic displacement sensor, the calibration based on piezoelectric ceramics is applied to improve the linearity of the displacement sensor. Experiment results show that the fiber-optic displacement sensor has a linear response with the nominal working distance of 90 um.展开更多
A signal processing method of realizing a large-range displacement measurement in a sinusoidal phase- modulating laser diode interferometer is proposed. The method of obtaining the dynamic value of the effective sinus...A signal processing method of realizing a large-range displacement measurement in a sinusoidal phase- modulating laser diode interferometer is proposed. The method of obtaining the dynamic value of the effective sinusoidal phase-modulating depth is detailed, and the residual amplitude modulation is also taken into account. Numerical simulations and experiments are carried out to compare this method with the traditional one. We prove that, with this method, the sinusoidal phase-modulating laser diode interferometer can realize a centimeter-level displacement measurement range with high precision, which is much better than the traditional method.展开更多
In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional ...In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional interferometers to determine the displacement direction.The displacement measurement principle and signal processing method of the orthogonal double interferometer are studied.Unlike the arctangent algorithm,the displacement analysis uses the arc cosine algorithm,avoiding any pole limit in the distance analysis process.The minimum step size of the final experimental displacement system is 5 nm,which exhibits good repeatability,and the average error is less than 0.12 nm.展开更多
We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings...We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.展开更多
Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerica...Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.展开更多
We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions...We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm,and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.展开更多
Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To depo...Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To deposit a single nanodot in a single shot of laser irradiation,a liquid nanodrop is transferred from donor to receiver and finally solidified via a solid–liquid–solid(SLS)process.In conventional LIDT experiments,multi-shots with step scanning have been used to form array structures.However,interference laser processing can achieve an arrayed process and generate a periodic structure in a single shot.In this study,a femtosecond laser interference pattern was first applied to LIDT,and an array of nanodots was successfully deposited in a single shot,producing the following unit structures:a single dot,adjoining dots,and stacking dots.The diameter of the smallest nanodot was 355 nm,and the narrowest gap between two adjoining nanodots was 17.2 nm.The LIDT technique produces high-purity,catalyst-free that do not require post-cleaning or alignment processes.Given these significant advantages,LIDT can expand the usability of nanodots in a wide range of fields.展开更多
基金supported financially by the National Natural Science Foundation of China (NSFC) (Grant No.51775378)the Key Projects in Tianjin Science&Technology Support Program (Grant No.19YFZC GX00890).
文摘Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.
基金This project is supported by National Natural Sciences Foundation of China (No.50175037).
文摘On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optical principle of the sensor is explained, and the relation between the grating motion displacement and the phase shift of interference stripes is deduced. The improvement of the integral structure and the method of photoelectric signal processing are described in detail. With the software system based on the virtual instrument development platform Labwindows/CVI and other hardwares such as the precision displacement worktable, the surfaces of typical parts are measured and the characterization results are given. The sensor has wide measuring range and high resolution, its sensitivity and resolution being independent of the wavelength of the incident light. The vertical measuring range is 0-6 mm, and the vertical resolution is 0.005μm. The experimental results show that the sensor can be used to measure and characterize the surface topography parameters of the plane and curved surface.
文摘In order to effectively control the stress and distortion which produced in welding process, the dynamic change laws of displacement field is the most important factor. The characteristics of the welding dynamic displacement field is high temperature, high strain velocity, thus ordinary methods such as resistance strain gauge or Moiré method can not be used for the measurement of the zone of high temperature. Speckle interference method has the merits of non-contact, resistance to the disturbance of impure lights, high accuracy of measurement (half of wavelength).The paper represents the measurement of dynamic displacement field of argon-arcspot welding, by which it shows that the method of speckle interference is feasible for the measurement of welding dynamic displacement.
基金supported by National Natural Science Foundation of China under Grant No.60425101-1Fund for Innovative Research Groups of NSFC under Grant No.60721001
文摘A novel multi-laser beams measuring system (MLBM) for high precision detection on displacement of flow fields based on laser backscatter was designed and studied. MLBM has many advantages, such as simple structure, high stability, and no limitation of the monochromaticity of laser. By circumventing the strong influence of atmospheric backscattering on the high sensitivity of target echo detection, high precision detection on backscatter density of laser by signal processing was achieved. Furthermore, the signal densities of various distances were extracted by time sampling and precise frequency control of digital circuit. Finally, the MLBM system including devices integrated of emitting and reviving equipments and program was obtained. Detection experiments showed that our system has high precision and the measurement error could be controlled within 5% to 10%.
基金supported by the National Natural Science Foundation of China(Grant Nos.52305535,52122512,and 52188102)the Natural Science Foundation of Hubei Province(Grant No.2021CFA075)。
文摘The surface quality of a corrugated plate directly determines the heat transfer property of the thermal power mechanical apparatus.Traditional detection methods are impractical for real-world production,being slow and destructive.In contrast,the point laser displacement sensor,employing the optical triangle method,emerges as a promising device for assessing parts with variable curvature and highly reflective surfaces.Despite its benefits,high-density sampling by an innate frequency introduces challenges such as data redundancy and a poor signal-to-noise ratio,potentially affecting the efficiency and precision of subsequent data processing.To address these challenges,adjustable frequency data sampling has been developed for this sensor,allowing adaptive sampling for corrugated plate digitization.The process begins with surface digitization to extract discrete points,which are transformed into intersection curves using the B-spline fitting technique.Subsequently,dominant points are identified,considering multigeometric constraints for curvature and arch height.Finally,the sampling signal is adjusted based on the distribution information of dominant points.Comparative results indicate that the proposed method effectively minimizes redundant sampling without compromising the accurate capture of essential geometric features.
基金supported by National Key R&D Program of China(No.2023YFE0108900)Horizon Europe Program(L4DNANO No.101086227)+1 种基金Jilin Provincial Science and Technology Program(Nos.20210101393JC,20210101069JC,20210101038JC,2020C022-1,20190201287JC and 20190702002GH)“111”Project of China(No.D17017).
文摘A 3D nano-displacement measurement method,where the difference in phase between the beams in a four-beam laser interference is changed,is proposed.Simulation results demonstrate that the variation of phase difference causes the deviation of the interference pattern in the laser interference system.Based on this theory,we design and build a four-beam laser interference system.The corner cube prism in the optical path is shifted,and the phase of the beam is changed by applying different voltages to a piezoelectric stage.The phase difference is obtained by analyzing the lattice pattern with subpixel precision,and then the displacement is determined by correlation operation.The experimental measurement results are consistent with the theoretical analysis,thereby verifying the feasibility of this measurement method.
基金supported by National Basic Research Program of China(973 Program,No.2013CB967503)National Natural Science Foundation of China(No.81170857)Shanghai Key Laboratory of Visual Impairment and Restoration,Fudan University,Shanghai,China
文摘Objective: To study the foveal displacement during the closure of idiopathic macular holes(MHs).Methods: Thirty-seven idiopathic MH patients treated by pars plana vitrectomy and internal limiting membrane peeling were studied prospectively.Locations of MH center and foveal pit were measured by optic coherence tomography.Retinal displacement was observed using confocal scanning laser ophthalmoscopy.Results: A total of 40 eyes were included in this study and MHs were closed in 37 eyes(92.5%).The confocal scanning laser ophthalmoscopy showed that all of the retinal capillaries in the superior, inferior, nasal and temporal sides of the MHs moved toward the optic nerve head(ONH).The optic coherence tomography results showed that the mean nasal displacements of foveal pits were(102.9±61.2),(109.6±53.1), and(137.0±52.0) μm at 3, 6 and 12 months, respectively.And the mean vertical displacements were(55.9±49.4),(61.4±57.8) and(67.8±54.3) μm, respectively.Post-operative foveal pits were located in the nasal side of the MH centers.The extension of retina and nasal to the MH were in opposite directions: the nasal hole margin moved toward the MH, but the retina located closer to the ONH moved toward the ONH.The fellow eyes of three patients developed into idiopathic MH during the follow-up period and operations were performed for all of the three patients.Conclusion: Our results showed that center of macula does not move when an idiopathic MH develops, but it moves toward ONH during closure of hole; thus, new fovea is in nasal side of original fovea.
基金the National Natural Science Foundation of China(No.61803281)the Natural Science Foundation of Tianjin(Nos.18JCQNJC75500 and 18JCQNJC71200)the Scientific Research Project of Tianjin Education Commission(Nos.2017KJ253 and 2018KJ136).
文摘In order to achieve the accurate measurement of displacement, this Letter presents a self-mixing interference displacement measurement method suitable for the speckle effect. Because of the speckle effect, the amplitude of the self-mixing interference signal fluctuates greatly, which will affect the measurement accuracy of displacement. The ensemble empirical mode decomposition is used to process the interference signal, which can filter out high-frequency noise and low-frequency noise at the same time. The envelope of the self-mixing interference signal is extracted by Hilbert transform, and it is used to realize the normalization of the signal. Through a series of signal processing, the influence of speckle can be effectively reduced, and the self-mixing interference signal can be transformed into standard form. The displacement can be reconstructed by fringe counting and the interpolation method. The experimental results show that the method is successfully applied to the displacement measurement in the presence of speckle, which verifies the effectiveness and feasibility of the method.
基金supported by the National Natural Science Foundation of China (Nos. 51875406 and 51805365)
文摘An on-machine measuring(OMM)system with a laser displacement sensor(LDS)is designed for measuring free-form surfaces of hypersonic aircraft’s radomes.To improve the measurement accuracy of the OMM system,a novel Iteratively Automatic machine learning Boosted hand-eye Calibration(IABC)method is proposed.Both the hand-eye relationship and LDS measurement errors can be calibrated in one calibration process without any hardware changes via IABC.Firstly,a new objective function is derived,containing analytical parameters of the handeye relationship and LDS errors.Then,a hybrid calibration model composed of two kernels is proposed to solve the objective function.One kernel is the analytical kernel designed for solving analytical parameters.Another kernel is the automatic machine learning(AutoML)kernel designed to model LDS errors.The two kernels are connected with stepwise iterations to find the best calibration results.Compared with traditional methods,hand-eye experiments show that IABC reduces the calibration RMSE by about 50%.Verification experiments show that IABC reduces the measurement deviations by about 25%-50%and RMSEs within 40%.Even when the training data are obviously less than the test data,IABC performs well.Experiments demonstrate that IABC is more accurate than traditional hand-eye methods.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52175491).
文摘A method was proposed to analyze the influences of the non-ideal spectroscopic performance of optical components and orientation errors of a laser tracing measurement optical system on the tracing measurement performance.A comprehensive model of the interference fringe contrast based on the laser tracing system s measurement principle was established in this study.Simulation results based on ZEMAX verified the model.According to the simulation results,the placement angle of the analyzer had a direct influence on the interference fringe contrast.When the angle of the polarized light to the analyzer’s transmission axis increased from 65°to 85°,each contrast of the four-way interference fringes decreased from 0.9996 to 0.3528,the interference fringe contrast is decreased by 65%.Under the split ratio of beam splitters in the interference part(BS 1)of 5∶5,when the splitting ratio of BS 2 changed from 2∶8 to 8∶2,the fringe contrast of the interference signals received by the photodetectors increased,but the injection light intensity onto the PSD reflected by BS 2 decreased.The significant influence of the tracing performance was verified by the experiments.When splitting ratio of BS 2 increased,the contrast of the interference fringes increased.Due to the weakening of the incident light intensity of the PSD caused by the change of BS 2 splitting ratio,the response time of the tracing system is increased by 23.7 ms.As a result,the tracing performance of the laser tracing measurement optical system was degraded.An important theoretical basis was provided to evaluate and improve the accuracy and reliability of laser tracing measurement systems.
基金supported by the National Science and Technology Major Project for ‘‘High-grade Numerical Control Machine Tools and Basic Manufacturing Equipment” of China (No. 2013ZX04001071)
文摘In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe head,the frame of a coordinate measuring machine(CMM),etc.As the output of the laser sensor directly obtained possesses the 1D length of the laser beam,it needs to determine the unit direction vector of the laser beam denoted as(l,m,n)by calibration so as to convert the 1D values into 3D coordinates of target points.Therefore,an extrinsic calibration method based on a standard sphere is proposed to accomplish this task in the paper.During the calibration procedure,the laser sensor moves along with the motion of the CMM and gathers the required data on the spherical surface.Then,both the output of the laser sensor and the grating readings of the CMM are substituted into the constraint equation of the spherical surface,in which an over-determined nonlinear equation group containing unknown parameters is established.For the purpose of solving the equation group,a method based on non-linear least squares optimization is put forward.Finally,the system after calibration is utilized to measure the diameter of a metallic sphere 10 times from different orientations to verify the calibration accuracy.In the experiment,the errors between the measured results and the true values are all smaller than 0.03 mm,which manifests the validity and practicality of the extrinsic calibration method presented in the paper.
基金This work is supported by the National Natural Science Foundation of ChinaState key Lab.of Information Function Material of
文摘Applying the Fourier transform to the wave equations of elastic medium at its surface a laser pulse line source is acted, the integral representations of solutions are obtained. Displacement waveforms are calculated numerically by using double FFT. The calculated results include the displacements of the elastic half space of Aluminum medium, and epicenter and off-epicenter of an Aluminum plate. The two exciting sources of thermoelastic and ablating generation are considered respectively. The experiment was made on the Aluminum medium with a Nd:YAG laser and the normal displacement signals are detected by a laser interferometer. The numerical results are quite in agreement with experiments.
文摘The fiber-optic displacement sensor based on the distributed Bragg reflector fiber laser is proposed, that is, the fiber laser cavity is attached to the measured object, when the measured object is stretched or contracted, and the length of the fiber laser cavity is also stretched or contracted accordingly. In view of the nonlinearity of the fiber-optic displacement sensor, the calibration based on piezoelectric ceramics is applied to improve the linearity of the displacement sensor. Experiment results show that the fiber-optic displacement sensor has a linear response with the nominal working distance of 90 um.
基金supported by the National Natural Science Foundation of China under Grant No.51475262
文摘A signal processing method of realizing a large-range displacement measurement in a sinusoidal phase- modulating laser diode interferometer is proposed. The method of obtaining the dynamic value of the effective sinusoidal phase-modulating depth is detailed, and the residual amplitude modulation is also taken into account. Numerical simulations and experiments are carried out to compare this method with the traditional one. We prove that, with this method, the sinusoidal phase-modulating laser diode interferometer can realize a centimeter-level displacement measurement range with high precision, which is much better than the traditional method.
基金supported in part by the National Natural Science Foundation of China(No.62005194).
文摘In this Letter,we propose a simple structure of an orthogonal type double Michelson interferometer.The orthogonal detection method overcomes the problems of uneven ranging sensitivity and the inability of traditional interferometers to determine the displacement direction.The displacement measurement principle and signal processing method of the orthogonal double interferometer are studied.Unlike the arctangent algorithm,the displacement analysis uses the arc cosine algorithm,avoiding any pole limit in the distance analysis process.The minimum step size of the final experimental displacement system is 5 nm,which exhibits good repeatability,and the average error is less than 0.12 nm.
基金Project supported by the National Key Basic Research Program of China(Grant Nos.2014CB643903 and 2013CB932904)the National Special Funds for the Development of Major Research Equipment and Instruments,China(Grant No.2012YQ140005)+1 种基金the National Natural Science Foundation of China(Grant Nos.61435012,61274013,61306088,and 61290303)the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB01010200)
文摘We report a type-I Ga Sb-based laterally coupled distributed-feedback(LC-DFB) laser with shallow-etched gratings operating a continuous wave at room temperature without re-growth process. Second-order Bragg gratings are fabricated alongside the ridge waveguide by interference lithography. Index-coupled LC-DFB laser with a cavity of 1500 μm achieves single longitudinal mode continuous-wave operation at 20℃ with side mode suppression ratio(SMSR) as high as 24 dB.The maximum single mode continuous-wave output power is about 10 mW at room temperature(uncoated facet). A low threshold current density of 230 A/cm^2 is achieved with differential quantum efficiency estimated to be 93 mW/A. The laser shows a good wavelength stability against drive current and working temperature.
文摘Based on the effective structure of the self-mixing interference effects,a general model for the self-mixing interference effects in the LD pumped solid-state laser has been established for the first time.The numerical simulation of the self-mixing interference signal has been done,the results show that when the external cavity length is integral times of 1/2,1/3,2/3,1/4,3/4 of the effective cavity length,the intensity of the self-mixing interference signals reach maximum in value.While that of single mode laser is integral times of half of the effective cavity length,the measuring precision of displacement of single mode laser is λ/2.A conclusion can be drawn from the above results that the measuring precision of displacement of multi-mode laser is higher than that of single mode laser.
基金Supported by the Scientific Equipment Research Program of Chinese Academy of Sciences under Grant No 2014Y4201449
文摘We report the fabrication of 4-inch nano patterned wafer by two-beam laser interference lithography and analyze the uniformity in detail. The profile of the dots array with a period of 800 nm divided into five regions is characterized by a scanning electron microscope. The average size in each region ranges from 270 nm to 320 nm,and the deviation is almost 4%, which is approaching the applicable value of 3% in the industrial process. We simulate the two-beam laser interference lithography system with MATLAB software and then calculate the distribution of light intensity around the 4 inch area. The experimental data fit very well with the calculated results. Analysis of the experimental data and calculated data indicates that laser beam quality and space filter play important roles in achieving a periodical nanoscale pattern with high uniformity and large area. There is the potential to obtain more practical applications.
基金the Japan Society for the Promotion of Science(JSPS)through a Grant-in-Aid for Scientific Research(B)(No.16H038850)Amada Foundation for Metal Work Technology(AF-2018212).
文摘Laser-induced forward transfer(LIFT)is a direct-writing technique capable of depositing a single dot smaller than the laser wavelength at small shot energy through the laser-induced dot transfer(LIDT)technique.To deposit a single nanodot in a single shot of laser irradiation,a liquid nanodrop is transferred from donor to receiver and finally solidified via a solid–liquid–solid(SLS)process.In conventional LIDT experiments,multi-shots with step scanning have been used to form array structures.However,interference laser processing can achieve an arrayed process and generate a periodic structure in a single shot.In this study,a femtosecond laser interference pattern was first applied to LIDT,and an array of nanodots was successfully deposited in a single shot,producing the following unit structures:a single dot,adjoining dots,and stacking dots.The diameter of the smallest nanodot was 355 nm,and the narrowest gap between two adjoining nanodots was 17.2 nm.The LIDT technique produces high-purity,catalyst-free that do not require post-cleaning or alignment processes.Given these significant advantages,LIDT can expand the usability of nanodots in a wide range of fields.