A new type of rf excited diffusively cooled all-metal slab waveguide CO2 laser is presented, in which the waveguide channel is constructed by two copper side walls and two copper electrodes, and the discharge is confi...A new type of rf excited diffusively cooled all-metal slab waveguide CO2 laser is presented, in which the waveguide channel is constructed by two copper side walls and two copper electrodes, and the discharge is confined in the slab waveguide channel in terms of the voltage division structure. From this type of structure, over 1 kW laser power is obtained with an efficieney of more than 13%.展开更多
The transient absorption spectra of 1-naphthylacetic acid in tetrahydrofuran have been obtained by laser flash photolysis technique. The transient species bands are at 509, 535 and 553 nm. These peak intensities incre...The transient absorption spectra of 1-naphthylacetic acid in tetrahydrofuran have been obtained by laser flash photolysis technique. The transient species bands are at 509, 535 and 553 nm. These peak intensities increase in the maximum values at 10.4 mu s.展开更多
We report the superior stability of the composite Cs2CO3 :Ag/Ag cathode structure, which can be used in efficient organic light-emitting diodes (OLEDs). Devices with the Cs2CO3:Ag (1:10, 5nm)/Ag (95nm) cathod...We report the superior stability of the composite Cs2CO3 :Ag/Ag cathode structure, which can be used in efficient organic light-emitting diodes (OLEDs). Devices with the Cs2CO3:Ag (1:10, 5nm)/Ag (95nm) cathode show a considerably improved lifetime compared with the control device with the Cs2CO3 (0.5 nm)/Ag (100 nm) cathode. The composite Cs2CO3 :Ag/Ag film is proved to be stable in the atmosphere. X-ray diffraction (XRD) is applied to analyze the crystalline structure of the Cs2CO3:Ag film, and it is demonstrated that CsAg alloy is formed, leading to the improved stability of the thin film and the devices.展开更多
Azobenzene polymer films doped with and without Ag nanoparticles are prepared. The photoinduced reorientation process is investigated by using an Nd:YVO4 pump beam at 532 nm and a low semiconductor laser beam at 650 ...Azobenzene polymer films doped with and without Ag nanoparticles are prepared. The photoinduced reorientation process is investigated by using an Nd:YVO4 pump beam at 532 nm and a low semiconductor laser beam at 650 nm. The reorientation rate of azo polymer films is enhanced in the presence of Ag nanoparticles, and the rate of the azo polymer film with Ag concentration of 2.2 μg/ml is larger than that of the azo polymer films with Ag concentrations of 1.1 μg/ml and 4.4 μg/ml. The third-order nonlinear optical properties of the Ag/azo composite film are obtained by the Z-scan technique at a wavelength of 532 nm, and the measured nonlinear refractive index is 9.258×10-9 esu. It is shown that the main mechanisms involved in the large nonlinear optical responses come from the local field enhancement of Ag nanoparticles and the nonlinear effect of the azo polymer matrix.展开更多
The chemiluminescence spectrum in the optical cavity of discharge-driven hydrogen fluoride (HF) chemical laser is measured. The result reveals that the spectra of the helium and fluorine (F) atoms are the major co...The chemiluminescence spectrum in the optical cavity of discharge-driven hydrogen fluoride (HF) chemical laser is measured. The result reveals that the spectra of the helium and fluorine (F) atoms are the major components. Moreover, the green chemiluminescence in the downstream of the optical axis is mostly composed of the 60P20 spectral line of the HF molecule. The analysis shows that, except for the cold pumping reaction, the recombination of the F atoms and the hot pumping reaction also occur in the optical cavity. Due to the hot pumping reaction and the opticM cavity temperature in a specific range, the 60P20 line becomes the strongest HF molecule in the downstream region of the optical axis. After the hot pumping reaction, the green chemiluminescence always appears in the downstream region of the optical axis when the optical cavity temperature varies in a ~reater ran~.展开更多
A Closed Cavity measuring platform is built on the basis of a 1000 W-class direct current (DC)-discharge drived con- tinuous-wave (CW) HF/DF chemical laser. On this platform, the absorption coefficients of optical...A Closed Cavity measuring platform is built on the basis of a 1000 W-class direct current (DC)-discharge drived con- tinuous-wave (CW) HF/DF chemical laser. On this platform, the absorption coefficients of optical thin films coated on the surfaces of monocrystalline silicon substrates, at the wavelength of 3.6-4.1 μm, is measured, when the power density on the surfaces of optical thin films reaches about 3.16 kW/cm^2. The measuring principle and structure of the Closed Cavity is introduced. The temperature curves and balanced temperature rises of the film-suN strate systems under test measured through the experiment is presented in this Letter. The experiments show high reliability, good repeatability and strong practicality. The Closed Cavity measuring platform is applicable for not only absorption measurement but other performance measurement of optical thin films under high power density.展开更多
文摘A new type of rf excited diffusively cooled all-metal slab waveguide CO2 laser is presented, in which the waveguide channel is constructed by two copper side walls and two copper electrodes, and the discharge is confined in the slab waveguide channel in terms of the voltage division structure. From this type of structure, over 1 kW laser power is obtained with an efficieney of more than 13%.
文摘The transient absorption spectra of 1-naphthylacetic acid in tetrahydrofuran have been obtained by laser flash photolysis technique. The transient species bands are at 509, 535 and 553 nm. These peak intensities increase in the maximum values at 10.4 mu s.
文摘We report the superior stability of the composite Cs2CO3 :Ag/Ag cathode structure, which can be used in efficient organic light-emitting diodes (OLEDs). Devices with the Cs2CO3:Ag (1:10, 5nm)/Ag (95nm) cathode show a considerably improved lifetime compared with the control device with the Cs2CO3 (0.5 nm)/Ag (100 nm) cathode. The composite Cs2CO3 :Ag/Ag film is proved to be stable in the atmosphere. X-ray diffraction (XRD) is applied to analyze the crystalline structure of the Cs2CO3:Ag film, and it is demonstrated that CsAg alloy is formed, leading to the improved stability of the thin film and the devices.
文摘Azobenzene polymer films doped with and without Ag nanoparticles are prepared. The photoinduced reorientation process is investigated by using an Nd:YVO4 pump beam at 532 nm and a low semiconductor laser beam at 650 nm. The reorientation rate of azo polymer films is enhanced in the presence of Ag nanoparticles, and the rate of the azo polymer film with Ag concentration of 2.2 μg/ml is larger than that of the azo polymer films with Ag concentrations of 1.1 μg/ml and 4.4 μg/ml. The third-order nonlinear optical properties of the Ag/azo composite film are obtained by the Z-scan technique at a wavelength of 532 nm, and the measured nonlinear refractive index is 9.258×10-9 esu. It is shown that the main mechanisms involved in the large nonlinear optical responses come from the local field enhancement of Ag nanoparticles and the nonlinear effect of the azo polymer matrix.
文摘The chemiluminescence spectrum in the optical cavity of discharge-driven hydrogen fluoride (HF) chemical laser is measured. The result reveals that the spectra of the helium and fluorine (F) atoms are the major components. Moreover, the green chemiluminescence in the downstream of the optical axis is mostly composed of the 60P20 spectral line of the HF molecule. The analysis shows that, except for the cold pumping reaction, the recombination of the F atoms and the hot pumping reaction also occur in the optical cavity. Due to the hot pumping reaction and the opticM cavity temperature in a specific range, the 60P20 line becomes the strongest HF molecule in the downstream region of the optical axis. After the hot pumping reaction, the green chemiluminescence always appears in the downstream region of the optical axis when the optical cavity temperature varies in a ~reater ran~.
基金supported by the National Natural Science Foundation of China under Grant Nos.10304025 and 10974255
文摘A Closed Cavity measuring platform is built on the basis of a 1000 W-class direct current (DC)-discharge drived con- tinuous-wave (CW) HF/DF chemical laser. On this platform, the absorption coefficients of optical thin films coated on the surfaces of monocrystalline silicon substrates, at the wavelength of 3.6-4.1 μm, is measured, when the power density on the surfaces of optical thin films reaches about 3.16 kW/cm^2. The measuring principle and structure of the Closed Cavity is introduced. The temperature curves and balanced temperature rises of the film-suN strate systems under test measured through the experiment is presented in this Letter. The experiments show high reliability, good repeatability and strong practicality. The Closed Cavity measuring platform is applicable for not only absorption measurement but other performance measurement of optical thin films under high power density.