期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Bulging Distortion of Austenitic Stainless Steel Sheet on the Partially Penetrated Side of Non-Penetration Lap Laser Welding Joint
1
作者 Chengwu Yao Enze Liu +1 位作者 Jiaming Ni Binying Nie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期286-295,共10页
Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded aust... Non-penetration laser welding of lap joints in austenitic stainless steel sheets is commonly preferred in fields where the surface quality is of utmost importance.However,the application of non-penetration welded austenitic stainless steel parts is limited owing to the micro bulging distortion that occurs on the back surface of the partial penetration side.In this paper,non-penetration lap laser welding experiments,were conducted on galvanized and SUS304 austenitic stainless steel plates using a fiber laser,to investigate the mechanism of bulging distortion.A comparative experiment of DC01 galvanized steel-Q235 carbon steel lap laser welding was carried out,and the deflection and distortion profile of partially penetrated side of the sheets were measured using a noncontact laser interferometer.In addition,the cold-rolled SUS304 was subjected to heat holding at different temperatures and water quenching after bending to characterize its microstructure under tensile and compressive stress.The results show that,during the heating stage of the thermal cycle of laser lap welding,the partial penetration side of the SUS304 steel sheet generates compressive stress,which extrudes the material in the heat-affected zone to the outside of the back of the SUS304 steel sheet,thereby forming a bulge.The findings of these experiments can be of great value for controlling the distortion of the partial penetrated side of austenitic stainless steel sheet during laser non-penetration lap welding. 展开更多
关键词 Non-penetration lap laser welding Bulging distortion Austenitic stainless steel Compressive stress Tension stress
下载PDF
Study on the Effects of Helium-Argon Gas Mixture on the Laser Welding Performance of High Temperature Alloys
2
作者 Xiongzi CHEN Hesi PENG +2 位作者 Chunchen YAO Yu DAI Yewen QIN 《Research and Application of Materials Science》 2023年第2期21-24,共4页
In order to solve the problem of porosity in laser deep penetration welding of GH3625 high-temperature alloy plates,five different ratios of high-purity helium gas and high-purity argon gas mixed gases were compared i... In order to solve the problem of porosity in laser deep penetration welding of GH3625 high-temperature alloy plates,five different ratios of high-purity helium gas and high-purity argon gas mixed gases were compared in welding experiments after various process parameter improvements and adjustments failed to achieve Class I welds.The experimental results show that using high-purity helium gas or a mixture of 50%high-purity helium gas and 50%high-purity argon gas can both achieve Class I welds.This indicates that using high-purity helium gas or an appropriate mixed gas instead of pure argon is one of the effective ways to solve the problem of porosity in laser deep penetration welding of high-temperature alloys.The mixture of 50%high-purity argon gas and 50%high-purity helium gas can reduce the consumption of high-purity helium gas,lower production costs,and is more suitable. 展开更多
关键词 high-temperature alloy laser welding pores shielding gas welding quality
下载PDF
Underwater Laser Welding/Cladding for High-performance Repair of Marine Metal Materials:A Review 被引量:5
3
作者 Guifang Sun Zhandong Wang +3 位作者 Yi Lu Mingzhi Chen Kun Yang Zhonghua Ni 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第1期31-49,共19页
With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must... With the rapid developments of marine resource exploitation,mounts of marine engineering equipment are settled on the ocean.When it is not possible to move the damaged equipment into a dry dock,welding operations must be performed in underwater environments.The underwater laser welding/cladding technique is a promising and advanced technique which could be widely applied to the maintenance of the damaged equipment.The present review paper aims to present a critical analysis and engineering overview of the underwater laser welding/cladding technique.First,we elaborated recent advances and key issues of drainage nozzles all over the world.Next,we presented the underwater laser processing and microstructural-mechanical behavior of repaired marine materials.Then,the newly developed powder-feeding based and wire-feeding based underwater laser direct metal deposition techniques were reviewed.The differences between the convection,conduction,and the metallurgical kinetics in the melt pools during underwater laser direct metal deposition and in-air laser direct metal deposition were illustrated.After that,several challenges that need to be overcame to achieve the full potential of the underwater laser welding/cladding technique are proposed.Finally,suggestions for future directions to aid the development of underwater laser welding/cladding technology and underwater metallurgical theory are provided.The present review will not only enrich the knowledge in the underwater repair technology,but also provide important guidance for the potential applications of the technology on the marine engineering. 展开更多
关键词 Underwater laser welding Underwater laser direct metal deposition Drainage nozzle Marine metal materials Mechanical property Diffusible hydrogen
下载PDF
Interface reaction in aluminium matrix composite at laser welding 被引量:1
4
作者 刘黎明 祝美丽 +1 位作者 许德胜 吴林 《中国有色金属学会会刊:英文版》 CSCD 2001年第5期671-674,共4页
Interface reaction of SiC w/6061Al aluminium matrix composite subjected to laser welding was studied. It is pointed out that the main reason for bad weldability of the material is concerned with the interface reaction... Interface reaction of SiC w/6061Al aluminium matrix composite subjected to laser welding was studied. It is pointed out that the main reason for bad weldability of the material is concerned with the interface reaction during the welding. Effects of welding parameters on interface reaction were also investigated. The results show that the interface bonding state can be improved by laser beam, and the main welding parameter affecting the strength of weld is laser output power. The smaller the output power, the lower the extent of interface reaction and the better the mechanical properties. 展开更多
关键词 aluminium matrix composite laser welding interface reaction
下载PDF
Grain refining in weld metal using short-pulsed laser ablation during CW laser welding of 2024-T3 aluminum alloy 被引量:1
5
作者 Masaki Kasuga Tomokazu Sano Akio Hirose 《International Journal of Extreme Manufacturing》 2019年第4期34-41,共8页
The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a... The 2024 aluminum alloy is used extensively in the aircraft and aerospace industries because of its excellent mechanical properties.However,the weldability of 2024 aluminum alloy is generally low because it contains a high number of solutes,such as copper(Cu),magnesium(Mg),and manganese(Mn),causing solidification cracking.If high speed welding of 2024 aluminum alloy without the use of filler is achieved,the applicability of 2024 aluminum alloys will expand.Grain refining is one of the methods used to prevent solidification cracking in weld metal,although it has never been achieved for high-speed laser welding of 2024 aluminum alloy without filler.Here,we propose a short-pulsed,laser-induced,grain-refining method during continuous wave laser welding without filler.Bead-on-plate welding was performed on a 2024-T3 aluminum alloy at a welding speed of 1 m min−1 with a single mode fiber laser at a wavelength of 1070 nm and power of 1 kW.Areas in and around the molten pool were irradiated with nanosecond laser pulses at a wavelength of 1064 nm,pulse width of 10 ns,and pulse energy of 430 mJ.The grain-refinement effect was confirmed when laser pulses were irradiated on the molten pool.The grain-refinement region was formed in a semicircular shape along the solid–liquid interface.Results of the vertical section indicate that the grain-refinement region reached a depth of 1 mm along the solid–liquid interface.The Vickers hardness test results demonstrated that the hardness increased as a result of grain refinement and that the progress of solidification cracking was suppressed in the grain refinement region. 展开更多
关键词 2024 aluminum alloy hot cracking laser welding grain refinement dendrite fragmentation short pulsed laser laser ablation
下载PDF
Improving thermal efficiency and stability of laser welding process for magnesium alloy by combining power modulation and subatmospheric pressure environment
6
作者 Jie Ning Suck-Joo Na +3 位作者 Lin-Jie Zhang Xiang Wang Jian Long Won-Ik Cho 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第10期2788-2800,共13页
The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in s... The laser welding(LW)process of highly reflective materials presents low thermal efficiency and poor stability.To solve the problem,the effects of subatmospheric environment on LW process,technological parameters in subatmospheric environment on weld formation and welding with sinusoidal modulation of laser power on the stability of LW process in subatmospheric environment were explored.The AZ31magnesium(Mg)alloy was used as the test materials.The test result revealed that the weld penetration in subatmospheric environment can increase by more than ten times compared with that under normal pressure.After the keyhole depth greatly rises,significantly periodic local bulge is observed on the backwall surface of the keyhole and the position of the bulge shifts along the direction of the keyhole depth.Eventually,the hump-shaped surface morphology of the welded seam is formed;moreover,the weld width in local zones in the lower part of the welded seam remarkably grows.During LW in subatmospheric environment,the weld penetration can be further greatly increased through power modulation.Besides,power modulation can inhibit the occurrence of bulges in local zones on the backwall of the keyhole during LW in subatmospheric environment,thus further curbing the significant growth of the weld widths of hump-shaped welding beads and local zones in the lower part of welded seams.Finally,the mechanism of synchronously improving the thermal efficiency and stability of LW process of highly reflective materials through power modulation in subatmospheric environment was illustrated.This was conducted according to theoretical analysis of recoil pressure and observation results of dynamic behaviors of laser induced plasma clouds and keyholes in the molten pool through high speed photography. 展开更多
关键词 laser welding Subatmospheric environment Power modulation Highly reflective materials Thermal efficiency STABILITY
下载PDF
Nonlinear Identification and Control of Laser Welding Based on RBF Neural Networks
7
作者 Hongfei Wei Hui Zhao +1 位作者 Xinlong Shi Shuang Liang 《Computer Systems Science & Engineering》 SCIE EI 2022年第4期51-65,共15页
A laser beam is a heat source with a high energy density;this technol-ogy has been rapidly developed and applied in thefield of welding owing to its potential advantages,and supplements traditional welding techniques.A... A laser beam is a heat source with a high energy density;this technol-ogy has been rapidly developed and applied in thefield of welding owing to its potential advantages,and supplements traditional welding techniques.An in-depth analysis of its operating process could establish a good foundation for its application in China.It is widely understood that the welding process is a highly nonlinear and multi-variable coupling process;it comprises a significant number of complex processes with random uncertain factors.Because of their nonlinear mapping and self-learning characteristics,artificial neural networks(ANNs)have certain advantages in comparison to traditional methods in thefield of welding.Laser welding is a nonlinear dynamic process;these processes still pose a major challenge in thefield of control.Therefore,establishing a stable model is a pre-requisite for achieving accurate control.In this study,the identification and con-trol of radial basis function neural networks in laser welding processes and self-tuning PID control methods are proposed to improve weld quality.Using a MATLAB simulation,it is shown that the proposed method can obtain a good description of the level of nonlinear dynamic control,and that the algorithm iden-tification accuracy is high,practical,and effective.Using this method,the weld width quickly reaches the expected value and the system remains stable,with good robustness.Further,it ensures the stability and dynamic performance of the welding process and improves weld quality. 展开更多
关键词 laser welding radial basis function neural networks SELF-TUNING NONLINEAR IDENTIFICATION
下载PDF
Influence of phosphorus in high strength steel on welding quality in laser welding
8
作者 ZHANG Wu,YANG Xingliang,LIU Yonggang and ZHAO Yong Technological Center,Maanshan Iron & Steel Co.,Ltd.,Maanshan 243000,Anhui,China 《Baosteel Technical Research》 CAS 2010年第S1期55-,共1页
P-added high strength IF steel M250P1 is widely used in vehicle body and safety parts because of its good mechanical performance and forming properties.Experiments of high power laser welding of 4.8 mm thick P-added h... P-added high strength IF steel M250P1 is widely used in vehicle body and safety parts because of its good mechanical performance and forming properties.Experiments of high power laser welding of 4.8 mm thick P-added high strength IF steel M250P1 is performed by using a 12 kW CO2 laser.In order to investigate the effects of phosphorus in high strength steel on the quality of welding,the Cupping and tensile tests,optical and SEM energy dispersive spectrometer analysis have been done on three welded joints.Some results have been obtained below.In the given welding parameters,the welded joints show good tensile and forming properties.However,it has been also found that the cracking is easy to occur in the fusion zone of welded joint during deformation.Some research works have been done.The results show that the fast cooling of fusional metal leads to the phosphorus microsegregation in the fusion zone because of relative low diffusion rate of phosphorus,which brings about the poor toughness of welded joints. 展开更多
关键词 P-added high strength IF steel laser welding phosphorus microsegregation
下载PDF
The Effect of Argon Inert Gas on the Laser Welding Quality of Co-Cr and Ni-Cr Base Metal Alloys
9
作者 Sklavou Efthymia Poulis Nikolas Prombonas Anthony 《Journal of Biomedical Science and Engineering》 2021年第12期442-451,共10页
The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A... The purpose of this research was to study the effect of Argon inert gas on the laser welding quality of Co-Cr and Ni-Cr base metal alloys, which are widely used as Fixed Prosthodontics alloys in Dental Laboratories. A total of 36 specimens were manufactured (18 of Ni-Cr alloy and 18 of Co-Cr alloy). The specimens were then divided into 3 subgroups (6 specimens each): control;argon-welded;and non-Argon welded. The specimens were cut, laser welded, radiographed and finally tested under tensile strength testing, followed by examination using Scanning Electron Microscopy. The tensile strength of welded specimens was lower than the strength of non-welded specimens, however this difference was not found to be statistically significant. The material factor (Co-Cr alloy or Ni-Cr alloy) has a statistically significant effect on the tensile strength, while the presence or not of the inert gas, as well as the combination of the two factors do not have a statistically significant effect. The laser welding process applied in daily practice (separation of specimen, formation of two cones in contact, aggregation of two cones, filling of the remaining gap by welding) is considered satisfactory in terms of weld strength. The factor of the material, as an independent factor, affects the tensile strength to a statistically significant degree, in contrast to the factor of the presence of inert gas which does not affect to a statistically significant degree. 展开更多
关键词 laser welding Co-Cr Alloys Ni-Cr Alloys Mechanical Properties ARGON No Argon Environment
下载PDF
Transient Thermal Modeling in Laser Welding of Metallic/Nonmetallic Joints Using SolidWorks^(█) Software
10
作者 Fredrick Madaraka Mwema 《International Journal of Nonferrous Metallurgy》 2017年第1期1-16,共16页
The purpose of this research is to develop a SolidWorks? model for transient temperature field of laser welding of PMMA/SS 304 materials for application in fabrication of the ultrasonic back-plate, with a view of opti... The purpose of this research is to develop a SolidWorks? model for transient temperature field of laser welding of PMMA/SS 304 materials for application in fabrication of the ultrasonic back-plate, with a view of optimizing the experimental conditions. The study is carried out on these materials because of the increasing application of both metals and non-metals. The work focuses specifically on these materials because they have been experimentally studied previously and as such, this study can be accepted as an assessment into feasibility of using SolidWorks? model to study the temperature field of the laser welding processes of metals and non-metals. The results of the SolidWorks? transient thermal model show that there is a concentration of high temperatures at the point of contact. It also shows that temperature decreases as we move in (between laser and the top face) to the thickness of the part. Additionally the maximum temperature occurs at the last point of the welding;this may be due to the accumulation of the temperature before arriving at the end. These findings are comparable to the previous simulated and experimental results on temperature field during laser welding of PMMA/SS 304 materials. However, SolidWorks? is shown to present a challenge in modeling a moving source of laser power. 展开更多
关键词 SolidWorks^(█) laser welding Joining Temperature Field Metals/Nonmetals Transient Thermal Modeling
下载PDF
Analysis of Autogenous Laser Welding in Low Carbon and Large Thickness Steel
11
作者 Daniel Kohls Carlos Enrique NinõBohorquez +1 位作者 Enori Gemilli Majorie Anacleto Bernardo 《Journal of Mechanical Engineering Research》 2021年第2期1-10,共10页
With the use of laser welding,it is possible to join different steel,with different thicknesses,with or without the action of protective layers.The quality of laser radiation makes it possible to get certain character... With the use of laser welding,it is possible to join different steel,with different thicknesses,with or without the action of protective layers.The quality of laser radiation makes it possible to get certain characteristics that are impossible to get by other processes,such as high welding speeds,less metallurgical effects suffered by the heat-affected zone(ZAC),and this process also does not require filler metal,therefore it is free from possible contamination.Combined with traditional welding methods,laser welding produces narrower weld beads,allowing for better prevention of corrosion and thermal distortions.Although the process already has high industrial knowledge,some random defects,such as porosities and inconsistencies,are still found.This work presents a systematic study to determine the influence of laser welding parameters and how these parameters influence welding defects.For this,the experimental part was carried out in the welding laboratory-LABSOLDA,of the Federal University of Santa Catarina-UFSC,during the laser welding processes,a welding speed of 2.4 m/min was reached.For this experiment,argon was used as a shielding gas and 1020 steel was used as the base material. 展开更多
关键词 Autogenous laser welding welding of thick joints Keyhole stability
下载PDF
Laser welding process and strength enhancement of carbon fiber reinforced thermoplastic composites and metals dissimilar joint:A review
12
作者 Junke JIAO Jihao XU +3 位作者 Chenghu JING Liyuan SHENG Haolei RU Hongbo XIA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第12期13-31,共19页
Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical proper... Carbon fiber reinforced thermoplastic composites(CFRTP)and metals hybrid structures have been widely used in aircraft lightweight manufacturing.However,due to the significant difference in physical and chemical properties between CFRTP and metals,there are lots of challenges to connect them with high quality.Laser welding has a good application prospect in CFRTP and metals connection,and a significant research progress has been made in the exploration of CFRTP-metal laser joining mechanism,joining process optimization,joining strength improvement and joining defects controlling.However,there are still some problems need to be solved for this technology application.In this paper,the research progress of CFRTP-metal laser joining was summarized in three major aspects:theoretical modeling and simulation analysis,process exploration and parameter optimization,joint performance improvement and process innovation.And,problems and challenges of this technology were discussed,and the outlook of this research was provided. 展开更多
关键词 Carbon fiber reinforced thermoplastic composite and metal hybrid joints Defects controlling laser welding Numerical simulation
原文传递
Laser Beam Welding of 600 MPa Quenched and Tempered High-Strength Steel
13
作者 Pritchard Elmon Marozva Bruno Roberts Mose +1 位作者 Abdel-Monem El-Batahgy Thomas Ochuku Mbuya 《World Journal of Engineering and Technology》 2022年第2期241-253,共13页
Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate... Conventional fusion arc welding of high-strength quenched and tempered steel can be improved through the use of non-conventional laser beam welding. This article presents the investigations of autogenous bead on plate and butt CO<sub>2</sub> Laser Welding (LW) of 7 mm thick high-strength quenched and tempered low alloy SM570 (JIS) steel plates. The influence of laser welding parameters, mainly welding speed, defocusing distance and shielding gas flow rate on the weld profile, i.e., weld zone penetration depth and width, microstructure and mechanical properties of welded joints was determined. All welded joints showed smooth and uniform weld beads free from superficial porosity and undercuts. The selected best welding conditions were a laser power of 5.0 kW, welding speed of 500 mm/min, argon gas shielding flow rate of 30 L/min and a defocusing distance of -0.5 mm. It was observed that these conditions gave complete penetration and minimized the width of the weld bead. The microstructure of the welded joints was evaluated by light optical microscopy. The weld metal (WM) and heat-affected zone (HAZ) near weld metal achieved maximum hardness (355 HV). The tensile fractured samples showed the ductile mode of failure and ultimate tensile strength of 580 MPa. 展开更多
关键词 laser welding High-Strength Steel Quenched and Tempered Bead on Plate Joint Butt Joint Heat-Affected Zone (HAZ) CO2 Autogenous laser welding Mechanical Properties
下载PDF
Heat transfer and fluid flow and their effects on the solidification microstructure in full-penetration laser welding of aluminum sheet 被引量:6
14
作者 Shaoning Geng Ping Jiang +2 位作者 Xinyu Shao Lingyu Guo Xuesong Gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第11期50-63,共14页
Understanding the behaviors of heat transfer and fluid flow in weld pool and their effects on the solidification microstructure are significant for performance improvement of laser welds.This paper develops a three-di... Understanding the behaviors of heat transfer and fluid flow in weld pool and their effects on the solidification microstructure are significant for performance improvement of laser welds.This paper develops a three-dimensional numerical model to understand the multi-physical processes such as heat transfer,melt convection and solidification behavior in full-penetration laser welding of thin 5083 aluminum sheet.Solidification parameters including temperature gradient G and solidification rate R,and their combined forms are evaluated to interpret solidification microstructure.The predicted weld dimensions and the microstructure morphology and scale agree well with experiments.Results indicate that heat conduction is the dominant mechanism of heat transfer in weld pool,and melt convection plays a critical role in microstructure scale.The mushy zone shape/size and solidification parameters can be modulated by changing process parameters.Dendritic structures form because of the low G/R value.The scale of dendritic structures can be reduced by increasing GR via decreasing heat input.The columnar to equiaxed transition is predicted quantitatively via the process related G^3/R.These findings illustrate how heat transfer and fluid flow affect the solidification parameters and hence the microstructure,and show how to improve microstructure by optimizing the process. 展开更多
关键词 laser welding Heat transfer Fluid flow Solidification microstructure ALUMINUM
原文传递
The comparison of multi-layer narrow-gap laser and arc welding of S32101 duplex stainless steel 被引量:4
15
作者 李军兆 温凯 +3 位作者 孙清洁 刘一搏 孔玢 曾宪山 《China Welding》 CAS 2022年第4期37-47,共11页
Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint wer... Multi-layer narrow-gap welding of thick S32101 duplex stainless steel was conducted using laser welding with beam wobble process.The phase transition,grain size,phase proportion and crystal texture of welded joint were also studied and compared with gas metal arc welding process.The microhardness and tensile strength were measured and fracture surface was analyzed to evaluate the mechanical properties of welded joints.The results showed that beam wobble technology improved the misalignment of laser beam and filler wire in narrow groove and helped to avoid incomplete fusion defects.Compared to arc welding process,the groove size and heat input were reduced,while welding efficiency was increased.The faster cooling rate and lower temperature gradient of laser wobble welding favored grain refinement,while the austenite content in weld zone decreased.Both the beam wobble and swing arc were conducive to stir weld pool,optimizing the weld microstructure and joint formation.The microstructural variance in various weld passes was caused by the heat input and heat dissipation ability.The microhardness of laser welded joint was lower,while the tensile strength and elongation percentage were higher.The fracture surface of arc welded joint was featured with shallower dimples and cleavage steps. 展开更多
关键词 narrow gap welding laser welding gas metal arc welding duplex stainless steel mechanical properties
下载PDF
Hot-cracking susceptibility and shear fracture behavior of dissimilar Ti6Al4V/AA6060 alloys in pulsed Nd:YAG laser welding 被引量:1
16
作者 Xin XUE Xinyong WU Juan LIAO 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期375-386,共12页
Laser welding of dissimilar titanium/aluminum alloys has been employed at an increasing rate,particularly in the aerospace industry,owing to its advantages in terms of current design flexibility and fuel/cost savings.... Laser welding of dissimilar titanium/aluminum alloys has been employed at an increasing rate,particularly in the aerospace industry,owing to its advantages in terms of current design flexibility and fuel/cost savings.The major problem with dissimilar Ti/Al welds arises from the difference in the thermal expansion and contraction of the two metals,which leads to hot-cracking susceptibility and the mitigation of the mechanical property after welding.In the present study,pulsed Nd:YAG laser welding of Ti6 Al4 V and AA6060 has been addressed.Hot-cracking susceptibility in the heat affected zone and the shear fracture behavior of the lap joints were investigated through microstructural characterization and mechanical tests.The results indicate that the hot cracking tendency can be reduced by increasing the pulse peak power(7.5–8.5 kW)and the laser point diameter(0.8–1.0 mm)with specific pulse duration and overlap.An alternative control strategy for less hot cracks in the Ti/Al lap joint can be to increase the weld width and decrease the cooling rate during solidification.The shear fracture of the Ti/Al lap joint is likely to occur along the lower side path of the weld interface with decreasing weld surface collapsed amount and increasing aluminum base metal melt depth. 展开更多
关键词 Aluminum alloy Hot-cracking susceptibility Pulsed Nd:YAG laser welding Shear fracture behavior Titanium alloy
原文传递
Learning semantic-specific visual representation for laser welding penetration status recognition
17
作者 LIU TianYuan BAO JinSong +3 位作者 ZHENG HangBin WANG JunLiang YANG ChangQi GU Jun 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第2期347-360,共14页
The degree of penetration can directly reflect the forming quality of laser welding. The fine-grained feature of the molten pool/keyhole image brings challenges to the vision-based laser welding penetration status rec... The degree of penetration can directly reflect the forming quality of laser welding. The fine-grained feature of the molten pool/keyhole image brings challenges to the vision-based laser welding penetration status recognition. In this paper, a novel knowledge-and-data-hybrid driven recognition model is proposed for solving the problem of difficult learning of discriminative visual features of molten pool/keyhole images. In addition, a label semantic attention mechanism(LSA) is designed with three modules: representation of image visual feature, representation of labels semantic feature, and generation of label semantic attention. For learning discriminative features in visual space, LSA uses discriminative information in label semantics to guide the convolutional neural network. The experimental results show that the proposed LSA method has faster convergence and higher accuracy than the traditional attention mechanism. Further comparative experiments reveal that LSA is less dependent on the amount of training data and model complexity. The results of visualization experiments show that the visual features learned by the proposed method are more discriminative. 展开更多
关键词 label semantic attention mechanism word embedding convolutional neural network laser welding penetration status
原文传递
Spatial distribution of laser energy and its influence on the stability of extreme narrow keyholes during ultra-high power laser welding
18
作者 WANG YiLin JIANG Ping +2 位作者 GENG ShaoNing SHU LeShi SHAO XinYu 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第9期2079-2088,共10页
The instability of extremely narrow keyholes is the main challenge in high-power laser welding.In this work,the spatial energy distribution and its influence on the stability of extremely narrow keyholes during ultra-... The instability of extremely narrow keyholes is the main challenge in high-power laser welding.In this work,the spatial energy distribution and its influence on the stability of extremely narrow keyholes during ultra-high power laser welding are studied.A multiphase flow model that considers the vapor plume impact and the multiple scattering of laser radiation is built to simulate the topology and downstream wave flow on the keyhole wall.Drastic keyhole fluctuation is due to excessive energy accumulation,which arises from the abnormal wrinkle structures that form on the front keyhole wall.Suppressing the periodic cutting phenomena on the keyhole opening and the hump accumulation effect on the solid-liquid interface help smooth the keyhole surface.Optimized welding processes are obtained,producing fine,closed,and evenly distributed wrinkle structures,and the keyhole stability is correspondingly improved.The simulation results agree well with the experiment. 展开更多
关键词 ultra-high power laser welding extreme narrow keyhole spatial energy distribution keyhole stability
原文传递
Experimental study on gas metal arc welding and laser hybrid welding of WYS700 steel
19
作者 CHEN Fu HUANG Zhijun ZHONG Rutao 《Baosteel Technical Research》 CAS 2022年第4期9-15,共7页
Gas metal arc welding, laser welding, and laser-metal active gas welding(MAG) hybrid welding methods were applied to WYS700 steel.Different welding procedures were performed and different welding technologies were com... Gas metal arc welding, laser welding, and laser-metal active gas welding(MAG) hybrid welding methods were applied to WYS700 steel.Different welding procedures were performed and different welding technologies were compared.Macro metallographs of the welded joints were obtained, and the mechanical properties(such as tensile strength, bending property, and hardness) of the joints formed using the different welding technologies were determined.The results revealed that the joint of the WYS700 steel could be formed well through gas metal arc welding, laser welding, and laser-MAG hybrid welding.Furthermore, the softening of the welding heat affected zone can be effectively reduced to obtain good strength and plasticity by using a suitable welding procedure.Laser-MAG hybrid welding allows the realization of high efficiency and deep penetration for the welding of thick plates with specifications above 3 mm. 展开更多
关键词 WYS700 steel gas metal arc welding laser welding laser-MAG hybrid welding
下载PDF
Low Porosity in Cast Magnesium Welds by Advanced Laser Twin-Spot Welding
20
作者 Karl Fahlstrom Jon Blackburn +1 位作者 Leif Karlsson Lars-Erik Svensson 《Materials Sciences and Applications》 2019年第1期53-64,共12页
Porosity is reported to be a major issue when welding cast magnesium. Therefore, it is important to understand the pore formation mechanisms and find procedures that could be used to reduce porosity. This study invest... Porosity is reported to be a major issue when welding cast magnesium. Therefore, it is important to understand the pore formation mechanisms and find procedures that could be used to reduce porosity. This study investigated the possibility of using twin-spot optics for reducing the porosity in laser welded cast magnesium. Two twin-spot welding setups were compared using either a beam splitter or twin-spot welding with primary and secondary (placed in front of the primary optic) optics. The results showed that welding with a dual optic setup with a defocused secondary beam reduced the volumetric porosity in the weld to 5%. The highest levels of volumetric porosity were 30%, and were a result of using the dual optic setup, but with a defocused primary beam. No clear relation between the level of porosity and power or welding speed was found. It was found that the amount of porosity depended on the balance of the energy input (controlled by defocusing) between the two beams. Porosity formation can be reduced if the energy from the first beam results in the nucleation and initial growth of pores. Reheating by the second beam then allows the pores to grow and escape from the molten material without melting additional base material. Furthermore, twin-spot welding is shown to be a promising combination of a production friendly solution and high quality welding. 展开更多
关键词 laser welding Cast Magnesium Twin-Spot METALLURGY Porosity Automotive AM50 Alloy
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部