期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Formation mechanism of inherent spatial heterogeneity of microstructure and mechanical properties of NiTi SMA prepared by laser directed energy deposition 被引量:2
1
作者 MengJie Luo Ruidi Li +4 位作者 Dan Zheng JingTao Kang HuiTing Wu ShengHua Deng PengDa Niu 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期548-567,共20页
Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheat... Ni51Ti49 at.%bulk was additively manufactured by laser-directed energy deposition(DED)to reveal the microstructure evolution,phase distribution,and mechanical properties.It is found that the localized remelting,reheating,and heat accumulation during DED leads to the spatial heterogeneous distribution of columnar crystal and equiaxed crystal,a gradient distribution of Ni4Ti3 precipitates along the building direction,and preferential formation of Ni4Ti3 precipitates in the columnar zone.The austenite transformation finish temperature(Af)varies from-12.65℃(Z=33 mm)to 60.35℃(Z=10 mm),corresponding to tensile yield strength(σ0.2)changed from 120±30 MPa to 570±20 MPa,and functional properties changed from shape memory effect to superelasticity at room temperature.The sample in the Z=20.4 mm height has the best plasticity of 9.6%and the best recoverable strain of 4.2%.This work provided insights and guidelines for the spatial characterization of DEDed NiTi. 展开更多
关键词 shape memory alloy gradient functional materials laser directed energy deposition spatial heterogeneity additive manufacturing mechanical properties
下载PDF
Review on laser directed energy deposited aluminum alloys 被引量:2
2
作者 Tian-Shu Liu Peng Chen +7 位作者 Feng Qiu Hong-Yu Yang Nicholas Tan Yew Jin Youxiang Chew Di Wang Ruidi Li Qi-Chuan Jiang Chaolin Tan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期84-131,共48页
Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstrea... Lightweight aluminum(Al)alloys have been widely used in frontier fields like aerospace and automotive industries,which attracts great interest in additive manufacturing(AM)to process high-value Al parts.As a mainstream AM technique,laser-directed energy deposition(LDED)shows good scalability to meet the requirements for large-format component manufacturing and repair.However,LDED Al alloys are highly challenging due to their inherent poor printability(e.g.low laser absorption,high oxidation sensitivity and cracking tendency).To further promote the development of LDED high-performance Al alloys,this review offers a deep understanding of the challenges and strategies to improve printability in LDED Al alloys.The porosity,cracking,distortion,inclusions,element evaporation and resultant inferior mechanical properties(worse than laser powder bed fusion)are the key challenges in LDED Al alloys.Processing parameter optimizations,in-situ alloy design,reinforcing particle addition and field assistance are the efficient approaches to improving the printability and performance of LDED Al alloys.The underlying correlations between processes,alloy innovation,characteristic microstructures,and achievable performances in LDED Al alloys are discussed.The benchmark mechanical properties and primary strengthening mechanism of LDED Al alloys are summarized.This review aims to provide a critical and in-depth evaluation of current progress in LDED Al alloys.Future opportunities and perspectives in LDED high-performance Al alloys are also outlined. 展开更多
关键词 additive manufacturing laser directed energy deposition(LDED) aluminum alloys PRINTABILITY aluminum matrix composite auxiliary fields mechanical properties
下载PDF
Microstructure and Mechanical Properties of an Ultrahigh-strength Titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb Prepared Using Laser Directed Energy Deposition and Forging:A Comparative Study 被引量:2
3
作者 Junwei Yang Haibo Tang +4 位作者 Peiyuan Wei Hongwei Gao Jiawei Wang Haixin Huo Yanyan Zhu 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第1期55-66,共12页
The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,rese... The application of titanium alloys in aerospace put forward the requirement for higher strength.Additive manu-facturing is a promising method for the efficient and economical processing of titanium alloys.However,research on the additive manufacturing of ultrahigh-strength titanium alloys is still limited.The mechanisms of microseg-regation for high alloying elements and poor plasticity are still not clear.In this study,an ultrahigh-strength titanium alloy Ti-4.5Al-5Mo-5V-6Cr-1Nb(TB18)was prepared using two methods:laser direct energy deposi-tion(LDED)and forging.The LDEDed alloy contains three zones with similar grain morphologies but different microstructure.The microsegregation of the alloy is limited due to the rapid solidification and almost eliminated after the thermal cycle and solution treatment.With stress relief treatment,the LDEDed alloy exhibits anisotropic mechanical properties.After solution and aging treatments,its ultimate strength is enhanced;however,its plas-ticity is relatively lower than that of the wrought alloy with equally high strength.The excellent balance of the strength and plasticity of the wrought alloy can be ascribed to the formation of𝛼WGB and multiscale𝛼laths,which provides enlightenment for optimizing the properties of the LDEDed alloy. 展开更多
关键词 Ultrahigh-strength titanium alloy laser directed energy deposition TB18 Microstructure Tensile properties Heat treatment
原文传递
Effect of Aging Parameters on Inconel 718 Fabricated by Laser Directed Energy Deposition 被引量:1
4
作者 Nataniel Yong Syn Tham Grace Rui Si Tay +2 位作者 Bingqing Yao Kaiqiang Wu ZhiLi Dong 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第4期112-121,共10页
Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to ach... Inconel 718 is a nickel-based superalloy of high interest in high temperature applications such as turbine parts.To be used in such applications,heat treatments are commonly applied to dissolute Laves phase and to achieve𝛾γ′phase.However,conventional heat treatment methods for wrought Inconel 718 may not be suitable for Inconel 718 fabricated by laser directed energy deposition(LDED)due to its unique microstructure formed during the rapid solidification process.There has been a lack of investigation in heat treatments for Inconel 718 fabricated by this process,specifically around the impact of aging parameters on this alloy.In this study,the effects of aging parameters were studied by performing seven different heat treatments,including solutionising and aging treatments.Our results indicate that for LDED Inconel 718,a high temperature solution treatment of 1100℃for 1 h followed by single aging at 650℃for 20 h achieved a tensile strength and elongation of 1247 MPa and 23%,respectively.Further,results indicated that even with a shorter aging time of 10 h,γ′phase was found to be of comparable size to the standard double aged treatment. 展开更多
关键词 Inconel 718 laser directed energy deposition Heat treatment Microstructure Additive manufacturing
原文传递
Investigation on the Cracking Mechanism of Melt Growth Alumina/Aluminum Titanate Ceramics Prepared by Laser Directed Energy Deposition
5
作者 Yunfei Huang Dongjiang Wu +4 位作者 Chengxin Li Weijie Lv Guangyi Ma Cong Zhou Fangyong Niu 《Chinese Journal of Mechanical Engineering(Additive Manufacturing Frontiers)》 2023年第4期23-32,共10页
Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high... Oxide melt growth ceramics(OMGCs)exhibit excellent performance and microstructure stability near their melt-ing point and are expected to become a new structural material for long-term stable service in extremely high-temperature water-oxygen environments.Owing to its unique advantages of high efficiency,flexible manufac-turing,and near-net shaping,laser directed energy deposition(LDED)has become a promising technology for the rapid preparation of high-performance OMGCs.However,owing to the limited understanding of the crack-ing mechanism,the severe cracking problem that hinders OMGCs-LDED towards engineering applications has not been resolved.Alumina/aluminum titanate(Al_(2)O_(3)/Al_(x)Ti_(y)O_(z),A/AT)ceramics are prepared using an LDED system and their cracking characteristics are investigated.Subsequently,numerical simulations are conducted to reveal the dominant factors and influencing mechanisms of the cracking behavior.The results demonstrate that the cracking nucleation process is mainly controlled by solidification defects,whereas the cracking propagation process is determined primarily by both the microstructure and stress level.This study provides a theoretical basis for the development of appropriate cracking suppression methods for OMGCs-LDED. 展开更多
关键词 Additive manufacturing laser directed energy deposition Composite ceramics Alumina/aluminum titanate Cracking mechanism
原文传递
Microstructure and mechanical property of additively manufactured NiTi alloys:A comparison between selective laser melting and directed energy deposition 被引量:10
6
作者 ZHENG Dan LI Rui-di +4 位作者 YUAN Tie-chui XIONG Yi SONG Bo WANG Jia-xing SU Ya-dong 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第4期1028-1042,共15页
NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emph... NiTi shape memory alloy(SMA)with nominal composition of Ni 50.8 at%and Ti 49.2 at%was additively manufactured(AM)by selective laser melting(SLM)and laser directed energy deposition(DED)for a comparison study,with emphasis on its phase composition,microstructure,mechanical property and deformation mechanism.The results show that the yield strength and ductility obtained by SLM are 100 MPa and 8%,respectively,which are remarkably different from DED result with 700 MPa and 2%.The load path of SLM sample presents shape memory effect,corresponding to martensite phase detected by XRD;while the load path of DED presents pseudo-elasticity with austenite phase.In SLM sample,fine grain and hole provide a uniform deformation during tensile test,resulting in a better elongation.Furthermore,the nonequilibrium solidification was studied by a temperature field simulation to understand the difference of the two 3D printing methods.Both temperature gradient G and growth rate R determine the microstructure and phase in the SLM sample and DED sample,which leads to similar grain morphologies because of similar G/R.While higher G×R of SLM leads to a finer grain size in SLM sample,providing enough driving force for martensite transition and subsequently changing texture compared to DED sample. 展开更多
关键词 Ni50.8Ti49.2 shape memory alloy additive manufacturing selective laser melting laser directed energy deposition mechanical properties
下载PDF
Microstructure and room-temperature tensile property of Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C with near equiaxed β grain fabricated by laser directed energy deposition technique 被引量:3
7
作者 MengCheng Deng Shang Sui +3 位作者 Bo Yao Liang Ma Xin Lin Jing Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期308-320,共13页
Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building d... Near-equiaxed β grain was achieved in the near-α Ti60(Ti-5.7Al-4.0Sn-3.5Zr-0.4Mo-0.4Si-0.4Nb-1.0Ta-0.05C) titanium alloy via laser directed energy deposition(LDED). The microstructural evolution along the building direction and the room-temperature tensile properties along the horizontal and vertical directions(building direction) were systematically studied through SEM and OM. EBSD and XRD were utilized to accurately demonstrate the texture of the α and β phases. The results showed that the α phase presented a low texture intensity, which was ascribed to the weak textured β grain with near-equiaxed morphology, since there are Burgers orientation relationships during the β →α transition. In addition, numerical simulation, combined with the CET curve of Ti60 alloy considering the effect of multi-composition,was utilized to elucidate the formation mechanism of the near-equiaxed β grains. Furthermore, according to the solidification theory, we proposed that the solidification temperature range ΔTfwas more accurate than the growth restriction factor Q in predicting the formation tendency of equiaxed β grain in different titanium alloys. Tensile results showed that the horizontal and vertical samples had similar strength,while the former exhibited larger elongation than the latter. The effect of the near-equiaxed β grain and the internal α phase on mechanical properties were revealed at last. 展开更多
关键词 laser directed energy deposition Near-αtitanium alloy Equiaxedβgrain Room-temperature tensile property
原文传递
Effect of Cu-Rich Phase Precipitation on the Microstructure and Mechanical Properties of CoCrNiCux Medium-Entropy Alloys Prepared via Laser Directed Energy Deposition 被引量:1
8
作者 Yong Xie Zhixin Xia +3 位作者 Jixin Hou Jiachao Xu Peng Chen Le Wan 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第11期1591-1600,共10页
CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with inc... CoCrNiCux(x=0.16,0.33,0.75,and 1)without macro-segregation medium-entropy alloys(MEAs)was prepared using laser directed energy deposition(LDED).The microstructure and mechanical properties of CoCrNiCux alloys with increasing Cu content were investigated.The results indicate that a single matrix phase changes into a dual-phase structure and the tensile fracture behaviors convert from brittle to plastic pattern with increasing Cu content in CoCrNiCux alloys.In addition,the tensile strength of CoCrNiCux alloys increased from 148 to 820 MPa,and the ductility increased from 1 to 11%with increasing Cu content.The nano-precipitated particles had a mean size of approximately 20 nm in the Cu-rich phase area,and a large number of neatly arranged misfit dislocations were observed at the interface between the two phases due to Cu-rich phase precipitation in the CoCrNiCu alloy.These misfit dislocations hinder the movement of dislocations during tensile deformation,as observed through transmission electron microscopy.This allows the CoCrNiCu alloy to reach the largest tensile strength and plasticity,and a new strengthening mechanism was achieved for the CoCrNiCu alloy.Moreover,twins were observed in the matrix phase after tensile fracture.Simultaneously,the dual-phase structure with different elastic moduli coordinated with each other during the deformation process,significantly improving the plasticity and strength of the CoCrNiCu alloy. 展开更多
关键词 Medium-entropy alloys Mechanical properties laser directed energy deposition Misfit dislocations Cu-rich phase
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部