The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and exper...The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and experiments. By comparing the numerical analyses with the experiments, a proper numerical model was obtained. From the results of the numerical analyses and the experiments, the effects of process parameters on entrance diameters of drilled holes, shapes of the holes, taper angles of the holes and temperature distributions in the vicinity of the holes were examined quantitatively. In addition, the optimal drilling condition was estimated to improve the quality of the drilled holes.展开更多
Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using elec...Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using electroforms to achieve the complex free-form surfaces, and surface structures, such as leather graining that the industry demands. The manufacture of these electroforms is, however, time-consuming and expensive. This project aims to replace conventional electroforms with laser-drilled molds. Holes in tool molds should be drilled by using laser radiation as part of an automated process. The system consists of a robot with a fiber-laser beam source. A CAx (computer-aided x) process chain has been developed for this purpose in which the CAD (computer-aided design) data of the tool molds are processed, drill hole fields generated, and a machine-specific RC (robot control) program created. Process-specific fundamentals, such as suitable process windows and process control, have been devised to manufacture holes using fiber laser radiation The advantages of the new laser-drilled tool molds may result in substituting them for conventional electroforms, allowing old markets to be re-entered or additional markets to be created and targeted through new molds or lower costs.展开更多
In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused ...In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery.For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death,easy to produce the problem such as crack cause secondary damage effects to restore,in this paper,a bionic drill was designed based on the micro-structure of the dung beetle's head and back.The microstructure configuration parameters were optimized by numerical analysis,and making use of the optical fiber laser marking machine preparation of bionic bit;through drilling test,the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology,and the cooling mechanism and crack suppression strategy were studied.The experimental results show that when the speed is 60 m/min,the cooling effects of the bionic bit T1 and T2 are 15.31%and 19.78%,respectively,and both kinds of bits show obvious crack suppression effect.The research in this paper provides a new idea for precision and efficient machining of bone materials,and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools.展开更多
Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assemb...Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assembly, surface painting for decoration, etc. A shortcut to the solution of this intractable problem is proposed by utilizing a galvanometric laser scanner(GLS) with the aid of a camera. Without using the existing tedious GLS calibration procedures,the proposed method directly establishes a mapping between the 3D coordinates of the laser spots on the object surface and the control voltages of the scanner. A single-hidden layer feedforward neural network(SLFN) is employed to model the mapping. By projecting a dense grid of laser spots on the object to be marked and simultaneously taking only one image, the SLFN model is trained in minutes via a linear solving mechanism. Experiments demonstrate that the trained SLFN model has a good generalization performance for marking 3D target curves. The 3D laser marking errors on experimental objects are less than 0.5 mm. The proposed method is especially suitable for on-site use and can be conveniently extended to multiple GLSs for marking large complex objects.展开更多
Laser technology as one of the most important manufacturing tools in industry has entered the solar cell production processes in almost all aspects.Laser processing is extensively applied in the complete production li...Laser technology as one of the most important manufacturing tools in industry has entered the solar cell production processes in almost all aspects.Laser processing is extensively applied in the complete production line of major parts of high efficiency solar cells based on silicon wafer today,including laser edge isolation,grooving,drilling,soldering,etc.The thin-film solar cells which are on the threshold between development and mass production exhibit further potential in the reduction of production costs and also provide many opportunities for laser processing like laser scribing,laser edge deletion,etc.展开更多
基金supported by a grant-in-aid of Regional Innovation Center(RIC),New Technology Development and Research Center of Laser Application in Chosun University,Korea.
文摘The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and experiments. By comparing the numerical analyses with the experiments, a proper numerical model was obtained. From the results of the numerical analyses and the experiments, the effects of process parameters on entrance diameters of drilled holes, shapes of the holes, taper angles of the holes and temperature distributions in the vicinity of the holes were examined quantitatively. In addition, the optimal drilling condition was estimated to improve the quality of the drilled holes.
文摘Rotation sintering, also known as slush molding, is used to manufacture molded skins, such as dashboards or door interior panels for cars. At present, approximately 80% of such molded skins are manufactured using electroforms to achieve the complex free-form surfaces, and surface structures, such as leather graining that the industry demands. The manufacture of these electroforms is, however, time-consuming and expensive. This project aims to replace conventional electroforms with laser-drilled molds. Holes in tool molds should be drilled by using laser radiation as part of an automated process. The system consists of a robot with a fiber-laser beam source. A CAx (computer-aided x) process chain has been developed for this purpose in which the CAD (computer-aided design) data of the tool molds are processed, drill hole fields generated, and a machine-specific RC (robot control) program created. Process-specific fundamentals, such as suitable process windows and process control, have been devised to manufacture holes using fiber laser radiation The advantages of the new laser-drilled tool molds may result in substituting them for conventional electroforms, allowing old markets to be re-entered or additional markets to be created and targeted through new molds or lower costs.
基金Supported by National Natural Science Foundation of China (Grant No.51975496)National Key Research and Development Program (Grant No.2019YFB1704800)+2 种基金Hunan Provincial Innovative Province Construction Special Project of China (Grant No.2020GK2083)Fundamental Research Funds for the Central Universities of China (Grant No.20720200068)Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology。
文摘In recent years,the number of patients with orthopedic diseases such as cervical spondylosis has increased,resulting in an increase in the demand for orthopedic surgery.However,thermal necrosis and bone cracks caused by surgery severely restrict the development and progression of orthopedic surgery.For the material of cutting tool processing bone in bone surgery of drilling high temperature lead to cell death,easy to produce the problem such as crack cause secondary damage effects to restore,in this paper,a bionic drill was designed based on the micro-structure of the dung beetle's head and back.The microstructure configuration parameters were optimized by numerical analysis,and making use of the optical fiber laser marking machine preparation of bionic bit;through drilling test,the mathematical model of drilling temperature and crack generation based on micro-structure characteristic parameters was established by infrared thermal imaging technology and acoustic emission signal technology,and the cooling mechanism and crack suppression strategy were studied.The experimental results show that when the speed is 60 m/min,the cooling effects of the bionic bit T1 and T2 are 15.31%and 19.78%,respectively,and both kinds of bits show obvious crack suppression effect.The research in this paper provides a new idea for precision and efficient machining of bone materials,and the research results will help to improve the design and manufacturing technology and theoretical research level in the field of bone drilling tools.
基金partly supported by the National Natural Science Foundation of China (No. 51575276)
文摘Marking arbitrary three-dimensional(3D) target curves on given objects with curved surface is required in many industrial fields, such as fabric prepreg placement in composite material part fabrication, product assembly, surface painting for decoration, etc. A shortcut to the solution of this intractable problem is proposed by utilizing a galvanometric laser scanner(GLS) with the aid of a camera. Without using the existing tedious GLS calibration procedures,the proposed method directly establishes a mapping between the 3D coordinates of the laser spots on the object surface and the control voltages of the scanner. A single-hidden layer feedforward neural network(SLFN) is employed to model the mapping. By projecting a dense grid of laser spots on the object to be marked and simultaneously taking only one image, the SLFN model is trained in minutes via a linear solving mechanism. Experiments demonstrate that the trained SLFN model has a good generalization performance for marking 3D target curves. The 3D laser marking errors on experimental objects are less than 0.5 mm. The proposed method is especially suitable for on-site use and can be conveniently extended to multiple GLSs for marking large complex objects.
文摘Laser technology as one of the most important manufacturing tools in industry has entered the solar cell production processes in almost all aspects.Laser processing is extensively applied in the complete production line of major parts of high efficiency solar cells based on silicon wafer today,including laser edge isolation,grooving,drilling,soldering,etc.The thin-film solar cells which are on the threshold between development and mass production exhibit further potential in the reduction of production costs and also provide many opportunities for laser processing like laser scribing,laser edge deletion,etc.