This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address th...This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing.展开更多
Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts...Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.展开更多
In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capa...In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.展开更多
A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put fo...A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given.展开更多
A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field duri...A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.展开更多
Spatial angle measurement, especially the measurement of horizontal and vertical angle, is a basic method used for industrial large-scale coordinate measurement. As main equipments in use, both theodolites and laser t...Spatial angle measurement, especially the measurement of horizontal and vertical angle, is a basic method used for industrial large-scale coordinate measurement. As main equipments in use, both theodolites and laser trackers can provide very high accuracy for spatial angle measurement. However, their industrial applications are limited by low level of automation and poor parallelism. For the purpose of improving measurement efficiency, a lot of studies have been conducted and several alternative methods have been proposed. Unfortunately, all these means are either low precision or too expensive. In this paper, a novel method of spatial angle measurement based on two rotating planar laser beams is proposed and demonstrated. Photoelectric receivers placed on measured points are used to receive the rotating planner laser signals transmitted by laser transmitters. The scanning time intervals of laser planes were measured, and then measured point's horizontal/vertical angles can be calculated. Laser plane's angle parameters are utilized to establish the abstract geometric model of transmitter. Calculating formulas of receiver's horizontal/vertical angles have been derived. Measurement equations' solvability conditions and judgment method of imaginary solutions are also presented after analyzing. Proposed method for spatial angle measurement is experimentally verified through a platform consisting of one laser transmitter and one optical receiver. The transmitters used in new method are only responsible for providing rotating light plane signals carrying angle information. Receivers automatically measure scanning time of laser planes and upload data to the workstation to calculate horizontal angle and vertical angle. Simultaneous measurement of multiple receivers can be realized since there is no human intervention in measurement process .Spatial angle measurement result indicates that the repeatable accuracy of new method is better than 10". Proposed method can improve measurement's automation degree and speed while ensuring measurement accuracy.展开更多
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and sing...A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.展开更多
In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype...In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype based on laser displacement sensor and rotary encoder is proposed. The prototype is intended for the automated evaluation of the spline shaft rolling performance by measuring the dimensional change of tooth root, which is correlated with the surface residual stress and micro-hardness. Laser displacement sensor and rotary encoder are used to record the polar radius and polar angle of each point on measuring section. Data are displayed in a polar coordinate system and fitted in a gear. Through multipoint curvature method, the roots of spline shaft are recognized automatically. Then, the dimensional change can be calculated by fitting the radius of the tooth root circle before and after rolling. Systematic error covering offset error is also analyzed and calibrated. At last, measurement test results show that the system has advantages of simple structure, high measurement precision(radius error < 0.6 μm), high measurement efficiency(measuring time < 2 s) and automatic control ability, providing a new opportunity for the efficient evaluation of various spline shafts in high-precision mechanical processing.展开更多
We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle ...We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.展开更多
An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated.The effects of test jig parasites can be completely removed in the measurement ...An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated.The effects of test jig parasites can be completely removed in the measurement by a new calibration method.In theory,the measuring range of the measurement system is only determined by the measuring range of the instruments network analyzer and photo detector.Diodes' bandwidth of 7 5GHz and 10GHz is measured.The results reveal that the method is feasible and comparing with other method,it is more precise and easier to use.展开更多
External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams ...External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.展开更多
The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve ...The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements.展开更多
This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variatio...This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.展开更多
Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive mo...Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs),and the reconstruction image of the PFC su...The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs),and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm.A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST.The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image.The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.展开更多
Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplemen...Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.展开更多
We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifte...We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.展开更多
Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is int...Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.展开更多
文摘This study aims to improve the accuracy and safety of steel plate thickness calibration.A differential noncontact thickness measurement calibration system based on laser displacement sensors was designed to address the problems of low precision of traditional contact thickness gauges and radiation risks of radiation-based thickness gauges.First,the measurement method and measurement structure of the thickness calibration system were introduced.Then,the hardware circuit of the thickness system was established based on the STM32 core chip.Finally,the system software was designed to implement system control to filter algorithms and human-computer interaction.Experiments have proven the excellent performance of the differential noncontact thickness measurement calibration system based on laser displacement sensors,which not only considerably improves measurement accuracy but also effectively reduces safety risks during the measurement process.The system offers guiding significance and application value in the field of steel plate production and processing.
文摘Although near infrared (NIR) spectroscopy has been evaluated for numerous applications, the number of actual on-line or even on-site industrial applications seems to be very limited. In the present paper, the attempts to produce online predictions of the chemical oxygen demand (COD) in wastewater from a pulp and paper mill using NIR spectroscopy are described. The task was perceived as very challenging, but with a root mean square error of prediction of 149 mg/l, roughly corresponding to 1/10 of the studied concentration interval, this attempt was deemed as successful. This result was obtained by using partial least squares model regression, interpolated reference values for calibration purposes, and by evenly distributing the calibration data in the concentration space. This work may also represent the first industrial application of online COD measurements in wastewater using NIR spectroscopy.
文摘In this paper,a method of multipoint pseudorandom combined excita-tion with the orthogonal reciprocal repeated sequences(ORRS)is presented on thebackground of the on-line identification of multivariate system.The capacity of therestraint to the identification error caused by the non-random D.C.drift of the mul-ti-input excitation with the ORRS in the multivariate system is also discussed.Thevalidity of the method described in this paper is proved by the modelling tests of themulti-plate rotor system.
文摘A new approach to the on-line temperature rise measurement of submersible pump's motors is presented. A new method of power supply and signed transmission for the measurement device in the pump well is also put forward here. The design and some experimental results are given.
基金Reactor Pressure Boundary Materials Project !under the Nuclear R & D Program by MOST in Korea.
文摘A portable microcomputer-controlled inspection system has been developed for detection of magnetic properties of soft magnetic materials. It incorporates custom designed software for control of the magnetic field during operation such as demagnetization, field sweeping, and for data logging and analysis. Results are recorded using a 12-bit analog to digital converter and are then stored on disk. The magnetic hysteresis loop and Barkhausen noise data can be converted into important magnetic parameters: coecivity, remanence, and hysteresis loss, Barkhausen amplitude, and Barkhausen noise energy. This system incorporated with the magnetostriction, and magnetoacoustic emission, is then related with the nondestructive detection of material degradation.
基金supported by Key Program of National Natural Science Foundation of China (Grant No. 50735003)
文摘Spatial angle measurement, especially the measurement of horizontal and vertical angle, is a basic method used for industrial large-scale coordinate measurement. As main equipments in use, both theodolites and laser trackers can provide very high accuracy for spatial angle measurement. However, their industrial applications are limited by low level of automation and poor parallelism. For the purpose of improving measurement efficiency, a lot of studies have been conducted and several alternative methods have been proposed. Unfortunately, all these means are either low precision or too expensive. In this paper, a novel method of spatial angle measurement based on two rotating planar laser beams is proposed and demonstrated. Photoelectric receivers placed on measured points are used to receive the rotating planner laser signals transmitted by laser transmitters. The scanning time intervals of laser planes were measured, and then measured point's horizontal/vertical angles can be calculated. Laser plane's angle parameters are utilized to establish the abstract geometric model of transmitter. Calculating formulas of receiver's horizontal/vertical angles have been derived. Measurement equations' solvability conditions and judgment method of imaginary solutions are also presented after analyzing. Proposed method for spatial angle measurement is experimentally verified through a platform consisting of one laser transmitter and one optical receiver. The transmitters used in new method are only responsible for providing rotating light plane signals carrying angle information. Receivers automatically measure scanning time of laser planes and upload data to the workstation to calculate horizontal angle and vertical angle. Simultaneous measurement of multiple receivers can be realized since there is no human intervention in measurement process .Spatial angle measurement result indicates that the repeatable accuracy of new method is better than 10". Proposed method can improve measurement's automation degree and speed while ensuring measurement accuracy.
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
文摘A fitting process is used to measure the cavity loss and the quasi Fermi level separation for Fabry Pérot semiconductor lasers.From the amplified spontaneous emission (ASE) spectrum,the gain spectrum and single pass ASE obtained by the Cassidy method are applied in the fitting process.For a 1550nm quantum well InGaAsP ridge waveguide laser,the cavity loss of about ~24cm -1 is obtained.
基金Supported by Industrial Technology Development Program of China(Grant Nos.JCKY2017208C005,A0920132008)National Natural Science Foundation of China(Grant No.51575049)
文摘In order to control the quality of spline shaft in rolling process, an efficient measurement method for rolling performance evaluation is essential. Here, a newly developed on-machine non-contact measurement prototype based on laser displacement sensor and rotary encoder is proposed. The prototype is intended for the automated evaluation of the spline shaft rolling performance by measuring the dimensional change of tooth root, which is correlated with the surface residual stress and micro-hardness. Laser displacement sensor and rotary encoder are used to record the polar radius and polar angle of each point on measuring section. Data are displayed in a polar coordinate system and fitted in a gear. Through multipoint curvature method, the roots of spline shaft are recognized automatically. Then, the dimensional change can be calculated by fitting the radius of the tooth root circle before and after rolling. Systematic error covering offset error is also analyzed and calibrated. At last, measurement test results show that the system has advantages of simple structure, high measurement precision(radius error < 0.6 μm), high measurement efficiency(measuring time < 2 s) and automatic control ability, providing a new opportunity for the efficient evaluation of various spline shafts in high-precision mechanical processing.
基金supported by the National Natural Science Foundation of China(Grant No.61036016)
文摘We present a novel precise angle measurement scheme based on parallel multiplex laser feedback interferometry (PLFI), which outputs two parallel laser beams and thus their displacement difference reflects the angle variation of the target. Due to its ultrahigh sensitivity to the feedback light, PLFI realizes the direct non-contact measurement of non- cooperative targets. Experimental results show that PLFI has an accuracy of 8" within a range of 1400". The yaw of a guide is also measured and the experimental results agree with those of the dual-frequency laser interferometer Agilent 5529A.
文摘An accurate technique for measuring the frequency response of semiconductor laser diode chips is proposed and experimentally demonstrated.The effects of test jig parasites can be completely removed in the measurement by a new calibration method.In theory,the measuring range of the measurement system is only determined by the measuring range of the instruments network analyzer and photo detector.Diodes' bandwidth of 7 5GHz and 10GHz is measured.The results reveal that the method is feasible and comparing with other method,it is more precise and easier to use.
基金supported by the National Natural Science Foundation of China (Grant No 50575110)
文摘External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.
基金funded by Hebei Key Laboratory of Seismic Disaster Instrument and Monitoring Technology(Grant No.FZ224201)National Key Research and Development Project(Grant No.2022YFC2204301)the Special Fund of the Institute of Earthquake Forecasting,China Earthquake Administration(Grant No.CEAIEF2022030105).
文摘The vibration interference of the reference corner cube runs through the free flight process of the free-falling corner cube,which is superimposed on the whole laser interference fringes.Thus,it is necessary to solve the interference fringes with the entire fringe to analyze the quantitative influence of vibration on gravity measurements.
基金Project supported by the National Natural Science Foundation of China(Grant No.60577032)
文摘This paper proposes a novel method of multi-beam laser heterodyne measurement for metal linear expansion coefficient. Based on the Doppler effect and heterodyne technology, the information is loaded of length variation to the frequency difference of the multi-beam laser heterodyne signal by the frequency modulation of the oscillating mirror, this method can obtain many values of length variation caused by temperature variation after the multi-beam laser heterodyne signal demodulation simultaneously. Processing these values by weighted-average, it can obtain length variation accurately, and eventually obtain the value of linear expansion coefficient of metal by the calculation. This novel method is used to simulate measurement for linear expansion coefficient of metal rod under different temperatures by MATLAB, the obtained result shows that the relative measurement error of this method is just 0.4%.
文摘Based on the theory of multi-body system (MBS), bine’s and huston’s methods are applied to an on-line measuring system of machining center in this paper. Through the study on modeling technique, the comprehensive model for errors calculation in an on-line measuring System of machining center have been built for the first time. Using this model, the errors can be compensated by soft.ware and the measuring accuracy can be enhanced without any more inveSt. This model can be used in all kinds of machining center.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)National Natural Science Foundation of China(Nos.11175035,11475039)Chinesisch-Deutsches Forschungs project(GZ768)
文摘The laser speckle interferometry approach provides the possibility of an in situ optical noncontacted measurement for the surface morphology of plasma facing components(PFCs),and the reconstruction image of the PFC surface morphology is computed by a numerical model based on a phase unwrapping algorithm.A remote speckle interferometry measurement at a distance of three meters for real divertor tiles retired from EAST was carried out in the laboratory to simulate a real detection condition on EAST.The preliminary surface morphology of the divertor tiles was well reproduced by the reconstructed geometric image.The feasibility and reliability of this approach for the real-time measurement of PFCs have been demonstrated.
基金Project(51318010402)supported by General Armament Department Pre-Research Program of China
文摘Measurement uncertainty plays an important role in laser tracking measurement analyses. In the present work, the guides to the expression of uncertainty in measurement(GUM) uncertainty framework(GUF) and its supplement, the Monte Carlo method, were used to estimate the uncertainty of task-specific laser tracker measurements. First, the sources of error in laser tracker measurement were analyzed in detail, including instruments, measuring network fusion, measurement strategies, measurement process factors(such as the operator), measurement environment, and task-specific data processing. Second, the GUM and Monte Carlo methods and their application to laser tracker measurement were presented. Finally, a case study involving the uncertainty estimation of a cylindricity measurement process using the GUF and Monte Carlo methods was illustrated. The expanded uncertainty results(at 95% confidence levels) obtained with the Monte Carlo method are 0.069 mm(least-squares criterion) and 0.062 mm(minimum zone criterion), respectively, while with the GUM uncertainty framework, none but the result of least-squares criterion can be got, which is 0.071 mm. Thus, the GUM uncertainty framework slightly underestimates the overall uncertainty by 10%. The results demonstrate that the two methods have different characteristics in task-specific uncertainty evaluations of laser tracker measurements. The results indicate that the Monte Carlo method is a practical tool for applying the principle of propagation of distributions and does not depend on the assumptions and limitations required by the law of propagation of uncertainties(GUF). These features of the Monte Carlo method reduce the risk of an unreliable measurement of uncertainty estimation, particularly in cases of complicated measurement models, without the need to evaluate partial derivatives. In addition, the impact of sampling strategy and evaluation method on the uncertainty of the measurement results can also be taken into account with Monte Carlo method, which plays a guiding role in measurement planning.
基金Supported by the National Natural Science Foundation of China under Grant No F050306
文摘We present the thermal expansion coefficient (TEC) measurement technology of compensating for the effect of variations in the refractive index based on a Nd: YA G laser feedback system, the beam frequency is shifted by a pair of aeousto-optic modulators and then the heterodyne phase measurement technique is used. The sample measured is placed in a muffle furnace with two coaxial holes opened on the opposite furnace walls. The measurement beams hit perpendicularly and coaxially on each surface of the sample. The reference beams hit on the reference mirror and the high-refiectivity mirror, respectively. By the heterodyne configuration and computing, the influences of the vibration, distortion of the sample supporter and the effect of variations in the refractive index are measured and largely minimized. For validation, the TECs of aluminum samples are determined in the temperature range of 29-748K, confirming not only the precision within 5 × 10-7 K-1 and the accuracy within 0.4% from 298K to 448K but also the high sensitivity non-contact measurement of the lower reflectivity surface induced by the sample oxidization from 448 K to 748 K.
文摘Exhaust gas temperature is an important factor in NOx, THC and PM emissions of engines. Especially 2D temperature and concentration distribution plays an important role for the engine efficiency. A thermocouple is intrinsically a point temperature measurement method and noncontact 2D temperature distribution cannot be attained by thermocouples. Recently, as a measurement technique with high sensitivity and high response, laser diagnostics has been developed and applied to the actual engine combustions. With these engineering developments, transient phenomena such as start-ups and load changes in engines have been gradually elucidated in various conditions. In this study, the theoretical and experimental research has been conducted in order to develop the noncontact and fast response 2D temperature and concentration distribution measurement method. The method is based on a Computed Tomography (CT) method using absorption spectra of water vapor at 1388 nm. It has been demonstrated that the method has been successfully applied to engine exhausts to measure 2D temperature distributions.