Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth–Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Luno...Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth–Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Lunokhod corner-cube retroreflector(CCR) arrays placed on the Moon currently limit the ranging precision to a few centimeters for a single photon received. Therefore, it is necessary to deploy a new retroreflector with a single and large aperture to improve the ranging precision by at least one order of magnitude. Here we present a hollow retroreflector with a 170-mm aperture fabricated using hydroxide-catalysis bonding technology. The precisions of the two dihedral angles are achieved by the mirror processing with a sub-arc-second precision perpendicularity, and the remaining one is adjusted utilizing an auxiliary optical configuration including two autocollimators. The achieved precisions of the three dihedral angles are 0.10 arcsecond,0.30 arc-second, and 0.24 arc-second, indicating the 68.5% return signal intensity of ideal Apollo 11/14 based on the far field diffraction pattern simulation. We anticipate that this hollow CCR can be applied in the new generation of lunar laser ranging.展开更多
Space debris is a major problem for all the nations that are currently active in space. Adopting high-precision measuring techniques will help produce a reliable and accurate catalog for space debris and collision avo...Space debris is a major problem for all the nations that are currently active in space. Adopting high-precision measuring techniques will help produce a reliable and accurate catalog for space debris and collision avoidance. Laser ranging is a kind of real-time measuring technology with high precision for space debris observation. The first space-debris laser-ranging experiment in China was performed at the Shanghai Observatory in July 2008 with a ranging precision of about 60-80 cm. The experi- mental results showed that the return signals from the targets with a range of 900 km were quite strong, with a power of 40W (2J at 20 Hz) using a 10ns pulse width laser at 532 nm wavelength. The performance of the preliminary laser ranging system and the observed results in 2008 and 2010 are also introduced.展开更多
In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between t...In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR)system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a trackin~ svstem.展开更多
The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy ...The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system.展开更多
A novel laser ranging system using chaotic laser as probe light source is designed and presented.The system is made up of five components:chaotic light source,transmitter,receiver,data acquisition unit and data proces...A novel laser ranging system using chaotic laser as probe light source is designed and presented.The system is made up of five components:chaotic light source,transmitter,receiver,data acquisition unit and data processing unit.Chaotic light is generated by an 808 nm,500 mW,single-mode laser diode with optical feedback cavity.Single target detection and multi-target detection are experimentally realized by correlating the chaotic reference light and the reflected or backscattered probe light.The performances,including the resolution of 18 cm within at least 130 m range and the sensitivity of-20 dB,are achieved and analyzed.展开更多
Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LR...Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.展开更多
Satellite laser ranging(SLR)with higher repetition rate is the recent trend for its various advantages.Laser backscatter(coincidence between recently transmitted pulses and received pulses near the detector)is found t...Satellite laser ranging(SLR)with higher repetition rate is the recent trend for its various advantages.Laser backscatter(coincidence between recently transmitted pulses and received pulses near the detector)is found to be a constraint for the repetition rates higher than 20 kHz,due to,overlapping with photons returning from a satellite with the present constellation of most of the SLR systems.Such an overlap occurs at every 75 km satellite distance change at 2 kHz repetition rate,and remains for about 7.5 km;for a 20 kHz system however,it will occur after every 7.5 km and remains for 7.5 km,resulting in constant backscatter overlap e leaving no chance to avoid it.The resulting noise is 5 times more than before causing a serious problem in detection and lowers the signal to noise ratio of the overall SLR system.However,decreasing energy per shot at higher repetition rates e assuming a constant power laser e the resulting backscatter may decrease fractionally.展开更多
The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was ...The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.展开更多
The new Global Navigation Satellite System(GNSS)satellites,including GLONASS,Galileo,and BeiDou system,are equipped with Laser Retroreflector Arrays(LRA)to support Satellite Laser Ranging(SLR)tracking,which contribute...The new Global Navigation Satellite System(GNSS)satellites,including GLONASS,Galileo,and BeiDou system,are equipped with Laser Retroreflector Arrays(LRA)to support Satellite Laser Ranging(SLR)tracking,which contributes to the estimation of global geodetic parameters.In this study,we estimate the global geodetic parameters using the SLR observations to GNSS satellites and also investigate the effects of different data processing strategies on the estimated Earth Rotation Parameters(ERP),geocenter motion,and terrestrial scale.The results indicate that setting range bias parameters for each satellite-station pair can effectively account for the satellite-specific biases induced by LRAs,leading to smaller Root Mean Square Errors(RMSE)of the post-fit SLR residuals.Furthermore,estimating the range biases for each satellite-station pair improves the accuracy of the estimated station coordinates and ERP.We also examine the impact of different arc lengths on the estimates of ERP,geocenter motion,and terrestrial scale.The results show that extending arc length can significantly reduce the formal error of ERP.The 7-day strategy produces the smallest RMSEs of 473 microarcseconds and 495 microarcseconds for the estimated X-and Y-component of pole coordinates,and 52 microseconds for length-of-day,respectively.However,the estimated geocenter motion is less affected by the arc length,even the shortest 1-day arc strategy can capture the seasonal variations of geocenter motion in Z component.For scale estimation,extending the arc length notably improves the accuracy of the estimated station coordinates and scale,but this advantage becomes less noticeable in longer arcs.The 7-day solution also obtains the closet scale results compared to ITRF2014,with the RMSE of 2.10×10^(–9).展开更多
Laser ranging with frequency comb intermode beats[IMBs]has been suffering from random phase drifts[RPDs]for two decades.In this study,we reveal the influence of signal transmission path on the RPDs and propose a real-...Laser ranging with frequency comb intermode beats[IMBs]has been suffering from random phase drifts[RPDs]for two decades.In this study,we reveal the influence of signal transmission path on the RPDs and propose a real-time suppression method using two IMBs of similar frequencies from different combs.As the two IMBs obtain similar RPDs during their transmission through same signal paths,the RPD of the original probing signal IMB is suppressed by deducting the RPD of the newly added local IMB in real time.In our experiments,a real-time suppression of RPDs is achieved using IMBs of 1001 and 1000 MHz.For the sampling time of 100 s,the effect of 19-fold suppression has been achieved.The proposed method provides a new solution for the long-standing phase drift problem in laser ranging with comb IMBs.展开更多
The first satellite laser ranging system for daylight tracking in China was set up at Shanghai Observatory, Chinese Academy of Sciences. Both false alarm probability due to strong background noises and detection proba...The first satellite laser ranging system for daylight tracking in China was set up at Shanghai Observatory, Chinese Academy of Sciences. Both false alarm probability due to strong background noises and detection probability of the laser returns with single photon level from satellite in daylight for our system are analysed. The system design and performance characteristics of subsystems, adopted techniques and satellite ranging observations are given.展开更多
The processes of the pulse transformation in satellite laser ranging (SLR) are analyzed,the analytical expressions of the transformation are deduced,and the effects of the transformation on Center-of-Mass corrections ...The processes of the pulse transformation in satellite laser ranging (SLR) are analyzed,the analytical expressions of the transformation are deduced,and the effects of the transformation on Center-of-Mass corrections of satellite and ranging precision are discussed.The numerical solution of the transformation and its effects are also given.The results reveal the rules of pulse transformation affected by different kinds of factors.These are significant for designing the SLR system with millimeter accuracy.展开更多
We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distan...We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.展开更多
The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s f...The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.展开更多
According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unillumina...According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unilluminating area on the moon's surface. These suggestions are: to control the dihedral angle offset within ± 0.1″; to use the larger aperture of the transparent face of cube corner prisms; to investigate how to separate out Apollo's reflected laser from mixed beam hitting on the LLR system.展开更多
Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been establi...Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.展开更多
Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools inv...Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools invented in the 20th century.Today,it is commonly used in ultraprecision machining and manufacturing,ultraprecision positioning control,and many noncontact optical sensing technologies.So far,the state-of-the-art laser interferometers are the ground-based gravitational-wave detectors,e.g.the Laser Interferometer Gravitational-wave Observatory(LIGO).The LIGO has reached the measurement quantum limit,and some quantum technologies with squeezed light are currently being tested in order to further decompress the noise level.In this paper,we focus on the laser interferometry developed for space-based gravitational-wave detection.The basic working principle and the current status of the key technologies of intersatellite laser interferometry are introduced and discussed in detail.The launch and operation of these large-scale,gravitational-wave detectors based on space-based laser interferometry is proposed for the 2030s.展开更多
In this article the problem of three-dimensional (3-D) reconstruction of scenes from terrestrial laser rangefinder data is processed, we present the simulations results of radiometric range function of the laser ran...In this article the problem of three-dimensional (3-D) reconstruction of scenes from terrestrial laser rangefinder data is processed, we present the simulations results of radiometric range function of the laser range finder imaging system for better optimization of maximum range detection with a given SNR (Signal-to-noise ratio). The study proposes a new reformulation of the radiometric Gaussian beam range equation on the basis of the photodetector active area. The adjustment of the optical and geometrical characteristics of the laser range finder so defined can be used to minimize the signal span to avoid the saturation of the detector cell and improve the ranging measurements (accuracy and range) for a 3D imaging application.展开更多
The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the resid...The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ’s post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ’s post science orbits is better than 10 cm and that there is no systematic error in GFZ’s post science orbits.展开更多
As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon,we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lun...As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon,we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lunar laser ranging echo.Laser ranging measurements during the penumbra lunar eclipse verify suspected thermal deformation in the Lunakhod 2 reflectors.Signal levels vary over two orders of magnitude as the penumbra eclipse progresses.This can be explained by the change in the dihedral angle of the corner-cube reflectors caused by the temperature.The results show that when the dihedral angle errors reach 1,the energy is reduced by 100 times compared with the ideal corner-cube reflector.In the experiment,our findings suggest that when the corner-cube reflector arrays enter the penumbra of the earth,the effective echo signal level which reaches 0.18 photons/s far exceeds the historical level of the full moon.However,11 minutes after the penumbra lunar eclipse,the effective echo rate of Lunakhod 2 will drop two orders of magnitude.The mechanism can explain the acute signal deficit observed at full moon.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11655001 and 11605065)
文摘Over the past 50 years, lunar laser ranging has made great contributions to the understanding of the Earth–Moon system and the tests of general relativity. However, because of the lunar libration, the Apollo and Lunokhod corner-cube retroreflector(CCR) arrays placed on the Moon currently limit the ranging precision to a few centimeters for a single photon received. Therefore, it is necessary to deploy a new retroreflector with a single and large aperture to improve the ranging precision by at least one order of magnitude. Here we present a hollow retroreflector with a 170-mm aperture fabricated using hydroxide-catalysis bonding technology. The precisions of the two dihedral angles are achieved by the mirror processing with a sub-arc-second precision perpendicularity, and the remaining one is adjusted utilizing an auxiliary optical configuration including two autocollimators. The achieved precisions of the three dihedral angles are 0.10 arcsecond,0.30 arc-second, and 0.24 arc-second, indicating the 68.5% return signal intensity of ideal Apollo 11/14 based on the far field diffraction pattern simulation. We anticipate that this hollow CCR can be applied in the new generation of lunar laser ranging.
基金supported by the Chinese Space Agency and the Instrument Developing Project of the Chinese Academy of Sciences (Grant No. 2920100701)
文摘Space debris is a major problem for all the nations that are currently active in space. Adopting high-precision measuring techniques will help produce a reliable and accurate catalog for space debris and collision avoidance. Laser ranging is a kind of real-time measuring technology with high precision for space debris observation. The first space-debris laser-ranging experiment in China was performed at the Shanghai Observatory in July 2008 with a ranging precision of about 60-80 cm. The experi- mental results showed that the return signals from the targets with a range of 900 km were quite strong, with a power of 40W (2J at 20 Hz) using a 10ns pulse width laser at 532 nm wavelength. The performance of the preliminary laser ranging system and the observed results in 2008 and 2010 are also introduced.
基金supported by the National Natural Science Foundation of China(41274189)
文摘In a satellite laser ranging telescope system, well-aligned encoders of the elevation and azimuth axes are essential for tracking objects. However, it is very difficult and time-consuming to correct the bias between the absolute-position indices of the encoders and the astronomical coordinates, especially in the absence of a finder scope for our system. To solve this problem, a method is presented based on the phenomenon that all stars move anti-clockwise around Polaris in the northern hemisphere. Tests of the proposed adjustment procedure in a satellite laser ranging (SLR)system demonstrated the effectiveness and the time saved by using the approach, which greatly facilitates the optimization of a trackin~ svstem.
基金supported by the National Natural Science Foundation of China (40774013, 41274189)
文摘The mobile satellite laser ranging system TROS1000, successfully developed in 2010, achieves a high repetition rate and enables daytime laser ranging. Its measurement range has reached up to 36000 km with an accuracy as precise as 1 cm. Using recent observations in Wuhan, Jiufeng, Xianning, and Rongcheng, Shandong, we introduce the progress made using this mobile observation system.
基金supported by the National Natural Science Foundation of China(No.60777041and No.60908014)
文摘A novel laser ranging system using chaotic laser as probe light source is designed and presented.The system is made up of five components:chaotic light source,transmitter,receiver,data acquisition unit and data processing unit.Chaotic light is generated by an 808 nm,500 mW,single-mode laser diode with optical feedback cavity.Single target detection and multi-target detection are experimentally realized by correlating the chaotic reference light and the reflected or backscattered probe light.The performances,including the resolution of 18 cm within at least 130 m range and the sensitivity of-20 dB,are achieved and analyzed.
基金supported by the BDS and the National Natural Science Foundation of China(Grant No.11503068,U1631240)Shanghai Key Laboratory of Space Navigation and Position Techniques(Grant No.06DZ2101)+2 种基金CAS Key Technology Talent ProgramNatural science fund of Shanghai(20ZR1467500)the Key Research Program of the Chinese Academy of Sciences(ZDRW-KT-2019-3-6)。
文摘Satellite laser ranging(SLR)is an unambiguous measurement technique and generates high accuracy satellite orbit data.All satellites in the BeiDou navigation satellite system(BDS)carried laser retro-reflector arrays(LRAs),so they can be tracked by ground SLR stations in order to provide the accurate observation data.The Shanghai astronomical observatory(SHAO)designed the LRAs,and also developed the dedicated SLR systems using a 1 m-aperture telescope and a transportable cabin-based SLR system with a telescopes of 60 cm aperture.These enable BDS satellite ranging during daytime and nighttime with centimeter-level precision,allowing highly accurate estimations of satellite orbits.Moreover,some of the BDS satellites are also equipped with laser time transfer(LTT)payloads,which were developed by the SHAO and China Academy of Space Technology(CAST),providing a highly accurate time comparison between the satellites and ground clocks.This paper describes the dedicated SLR system and the design of the LRAs for BDS satellites,as well as global SLR measurements.The SLR tracking data is used for evaluating the orbit accuracy of BDS satellites and broadcast ephemeris,with an accuracy of less than 1 m.The LTT measurements to BDS satellites for a single shot have a precision of approximately 300 picoseconds,with a time stability of 20 picoseconds in 500 s.
基金the Austrian Academy of Science for providing a placement and Higher education commission of Pakistan to fund this study
文摘Satellite laser ranging(SLR)with higher repetition rate is the recent trend for its various advantages.Laser backscatter(coincidence between recently transmitted pulses and received pulses near the detector)is found to be a constraint for the repetition rates higher than 20 kHz,due to,overlapping with photons returning from a satellite with the present constellation of most of the SLR systems.Such an overlap occurs at every 75 km satellite distance change at 2 kHz repetition rate,and remains for about 7.5 km;for a 20 kHz system however,it will occur after every 7.5 km and remains for 7.5 km,resulting in constant backscatter overlap e leaving no chance to avoid it.The resulting noise is 5 times more than before causing a serious problem in detection and lowers the signal to noise ratio of the overall SLR system.However,decreasing energy per shot at higher repetition rates e assuming a constant power laser e the resulting backscatter may decrease fractionally.
文摘The satellite laser ranging (SLR) data quality from the COMPASS was analyzed, and the difference between curve recognition in computer vision and pre-process of SLR data finally proposed a new algorithm for SLR was discussed data based on curve recognition from points cloud is proposed. The results obtained by the new algorithm are 85 % (or even higher) consistent with that of the screen displaying method, furthermore, the new method can process SLR data automatically, which makes it possible to be used in the development of the COMPASS navigation system.
基金The National Natural Science Foundation of China(Grant No.41974027,Grant No.42204017)the Fundamental Research Funds for the Central Universities(2042022kf1001)the Sino-German mobility program(Grant No.M0054).
文摘The new Global Navigation Satellite System(GNSS)satellites,including GLONASS,Galileo,and BeiDou system,are equipped with Laser Retroreflector Arrays(LRA)to support Satellite Laser Ranging(SLR)tracking,which contributes to the estimation of global geodetic parameters.In this study,we estimate the global geodetic parameters using the SLR observations to GNSS satellites and also investigate the effects of different data processing strategies on the estimated Earth Rotation Parameters(ERP),geocenter motion,and terrestrial scale.The results indicate that setting range bias parameters for each satellite-station pair can effectively account for the satellite-specific biases induced by LRAs,leading to smaller Root Mean Square Errors(RMSE)of the post-fit SLR residuals.Furthermore,estimating the range biases for each satellite-station pair improves the accuracy of the estimated station coordinates and ERP.We also examine the impact of different arc lengths on the estimates of ERP,geocenter motion,and terrestrial scale.The results show that extending arc length can significantly reduce the formal error of ERP.The 7-day strategy produces the smallest RMSEs of 473 microarcseconds and 495 microarcseconds for the estimated X-and Y-component of pole coordinates,and 52 microseconds for length-of-day,respectively.However,the estimated geocenter motion is less affected by the arc length,even the shortest 1-day arc strategy can capture the seasonal variations of geocenter motion in Z component.For scale estimation,extending the arc length notably improves the accuracy of the estimated station coordinates and scale,but this advantage becomes less noticeable in longer arcs.The 7-day solution also obtains the closet scale results compared to ITRF2014,with the RMSE of 2.10×10^(–9).
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.52175501 and 51605120)the Heilongjiang Provincial Natural Science Foundation(No.LH2021E059)the National Key Research and Development Program of China(No.2020YFC2200204)。
文摘Laser ranging with frequency comb intermode beats[IMBs]has been suffering from random phase drifts[RPDs]for two decades.In this study,we reveal the influence of signal transmission path on the RPDs and propose a real-time suppression method using two IMBs of similar frequencies from different combs.As the two IMBs obtain similar RPDs during their transmission through same signal paths,the RPD of the original probing signal IMB is suppressed by deducting the RPD of the newly added local IMB in real time.In our experiments,a real-time suppression of RPDs is achieved using IMBs of 1001 and 1000 MHz.For the sampling time of 100 s,the effect of 19-fold suppression has been achieved.The proposed method provides a new solution for the long-standing phase drift problem in laser ranging with comb IMBs.
基金Project supported by the astronomical council of Chinese Academy of Sciencesthe National Basic Research Project "Modern Crustal Movement and Geodynamics Research"
文摘The first satellite laser ranging system for daylight tracking in China was set up at Shanghai Observatory, Chinese Academy of Sciences. Both false alarm probability due to strong background noises and detection probability of the laser returns with single photon level from satellite in daylight for our system are analysed. The system design and performance characteristics of subsystems, adopted techniques and satellite ranging observations are given.
基金This work was supported by the National Climbing Project in Basic Research " Modern Crustal Movementand Geodynamic Research" , the National Mega-Project of Scientific Engineering "Crustal Movement Observation Network of China" , the National Natural Sc
文摘The processes of the pulse transformation in satellite laser ranging (SLR) are analyzed,the analytical expressions of the transformation are deduced,and the effects of the transformation on Center-of-Mass corrections of satellite and ranging precision are discussed.The numerical solution of the transformation and its effects are also given.The results reveal the rules of pulse transformation affected by different kinds of factors.These are significant for designing the SLR system with millimeter accuracy.
基金supported by the National Natural Science Foundation of China(No.11374105)
文摘We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector(SPD). The multi-channel SPD improve the counting rate more than 4×10~7 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting(TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×10~7 cps.
文摘The origin and spatial-temporal variation of the Earth’s magnetic field(EMF)is one of the important scientific problems that has long been unsolved.The Macao Science Satellite-1(MSS-1)under construction is China’s first high-precision EMF measurement satellite.To satisfy the highly precise requirements of the MSS-1 orbit measurement,a light,high-precision,four-prism laser retroreflector array was designed.It weighs approximately 285 g,its effective reflection area is greater than 1.77 cm^(2),and its size is 100×100×41 mm.The laser retro-reflector array has excellent performance,and it can achieve a ranging precision at the subcentimeter level for satellite laser ranging.It will be developed and installed on the MSS-1 as a power-free load for high-precision orbit measurement and accurate orbit calibration.The MSS-1 is planned to be brought into the International Laser Ranging Service observations.More than 31satellite laser ranging stations in the International Laser Ranging Service around the world will be able to measure the MSS-1 with long arcs,which will support the scientific mission of high-precision EMF exploration.
文摘According to our engineering research on satellite-borne laser retroreflector array, some suggestions are proposed on how to manufacture a new Apollo LLRA that can make us measure one illuminating point and unilluminating area on the moon's surface. These suggestions are: to control the dihedral angle offset within ± 0.1″; to use the larger aperture of the transparent face of cube corner prisms; to investigate how to separate out Apollo's reflected laser from mixed beam hitting on the LLR system.
基金Sponsored by the National Defense Science and Technology Laboratory Foundation (9140C3601130802)
文摘Pulse laser range detector is to measure the distance by estimating the time delay between the emitting pulse and echo pulse.In this paper,a mathematical model for the target echo signal of laser fuze has been established;in accordance with this model,the formulas for echo time-delay estimation and for amplitude estimation based on least squares criterion have been deduced.It is argued and simulated that the resolution of echo time-delay estimation could be improved through multi-reference correlation approach.Experiments illustrate that the approach enables pulsed laser fuze to perform high-precision ranging under a low signal-to-noise ratio condition.
基金the National Natural Science Foundation of China(Grant Nos.11655001,11654004,91836104).
文摘Precision measurement tools are compulsory to reduce measurement errors or machining errors in the processes of calibration and manufacturing.The laser interferometer is one of the most important measurement tools invented in the 20th century.Today,it is commonly used in ultraprecision machining and manufacturing,ultraprecision positioning control,and many noncontact optical sensing technologies.So far,the state-of-the-art laser interferometers are the ground-based gravitational-wave detectors,e.g.the Laser Interferometer Gravitational-wave Observatory(LIGO).The LIGO has reached the measurement quantum limit,and some quantum technologies with squeezed light are currently being tested in order to further decompress the noise level.In this paper,we focus on the laser interferometry developed for space-based gravitational-wave detection.The basic working principle and the current status of the key technologies of intersatellite laser interferometry are introduced and discussed in detail.The launch and operation of these large-scale,gravitational-wave detectors based on space-based laser interferometry is proposed for the 2030s.
文摘In this article the problem of three-dimensional (3-D) reconstruction of scenes from terrestrial laser rangefinder data is processed, we present the simulations results of radiometric range function of the laser range finder imaging system for better optimization of maximum range detection with a given SNR (Signal-to-noise ratio). The study proposes a new reformulation of the radiometric Gaussian beam range equation on the basis of the photodetector active area. The adjustment of the optical and geometrical characteristics of the laser range finder so defined can be used to minimize the signal span to avoid the saturation of the detector cell and improve the ranging measurements (accuracy and range) for a 3D imaging application.
基金Sponsored by the Key Laboratory of Geospace Environment and Geodesy Ministry of Education, China ( No.1469990324233-04-11) and the NationalScience Foundation (No.40274002 , No.40474001) .
文摘The technique of Evaluating CHAMP satellite orbit with SLR measurements is presented. As an independent evaluation of the orbit solution, SLR data observed from January 1 to 16, 2002 are processed to compute the residuals after fixing the GFZ’s post science orbits solutions. The SLR residuals are computed as the differences of the SLR measurements minus the corresponding distances between the SLR station and the GPS-derived orbit positions. On the basis of the SLR residuals analysis, it is found that the accuracy of GFZ’s post science orbits is better than 10 cm and that there is no systematic error in GFZ’s post science orbits.
基金Project supported by the National Natural Science Foundation of China(Grant No.12033009)。
文摘As the signal reflected by the corner-cube reflector arrays is very weak and easily submerged during the full moon,we analyze the influence of the thermal effect of corner-cube reflector arrays on the intensity of lunar laser ranging echo.Laser ranging measurements during the penumbra lunar eclipse verify suspected thermal deformation in the Lunakhod 2 reflectors.Signal levels vary over two orders of magnitude as the penumbra eclipse progresses.This can be explained by the change in the dihedral angle of the corner-cube reflectors caused by the temperature.The results show that when the dihedral angle errors reach 1,the energy is reduced by 100 times compared with the ideal corner-cube reflector.In the experiment,our findings suggest that when the corner-cube reflector arrays enter the penumbra of the earth,the effective echo signal level which reaches 0.18 photons/s far exceeds the historical level of the full moon.However,11 minutes after the penumbra lunar eclipse,the effective echo rate of Lunakhod 2 will drop two orders of magnitude.The mechanism can explain the acute signal deficit observed at full moon.