期刊文献+
共找到36篇文章
< 1 2 >
每页显示 20 50 100
Preparation of coated sand for selective laser sintering and optimization of baking process of sand moulds
1
作者 Peng-wei Wang Rui-long Yu +6 位作者 Rui Tan Yan Wang Ying-wei Zhou Yue-ting Ma Yan-hai Li Jia-jun Liu Shao-kui Yin 《China Foundry》 SCIE EI CAS CSCD 2023年第6期519-525,共7页
A cold method was used to prepare coated sand for application in the selective laser sintering(SLS)process.Tensile strength,loss on ignition,gas evolution,and accuracy of the SLS samples were tested and analyzed,and t... A cold method was used to prepare coated sand for application in the selective laser sintering(SLS)process.Tensile strength,loss on ignition,gas evolution,and accuracy of the SLS samples were tested and analyzed,and the baking process was thoroughly investigated.Compared with coated sand prepared by the hot method,the cold method yields a more uniform and complete resin film on the sand's surface,resulting in enhanced tensile strength and accuracy.Additionally,the cold method requires a lower binder content to meet the same strength requirements,thereby minimizing gas evolution,reducing porosity defects,and ultimately improving casting quality.The coated sand samples prepared through the cold method exhibit superior accuracy,with a size error of within±0.4 mm.In contrast,the coated sand samples prepared by the hot method display a lower accuracy,with an average negative error of 2.1993 mm.The highest tensile strength could be attained by controlling the baking temperature within a suitable range(180-190°C),which can effectively reduce the generation of gas,thus contributing to improved overall performance. 展开更多
关键词 selective laser sintering(SLS) coated sand cold method hot method BAKING
下载PDF
Effects of laser energy density on forming accuracy and tensile strength of selective laser sintering resin coated sands 被引量:17
2
作者 Xu Zhifeng Liang Pei +2 位作者 Yang Wei Li Sisi Cai Changchun 《China Foundry》 SCIE CAS 2014年第3期151-156,共6页
Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = ... Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated. 展开更多
关键词 selective laser sintering coated sands energy density tensile strength forming accuracy
下载PDF
Morphology and Mechanical Properties of PS/Al_2O_3 Nanocomposites Based on Selective Laser Sintering 被引量:6
3
作者 Zhifeng XU Jian ZHANG +2 位作者 Haizhong ZHENG Changchun CAI Yinhui HUANG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期866-870,共5页
Selective laser sintering (SLS) is a new process to prepare the polystyrene (PS)/Al2O3 nanocomposites. In this paper, with different laser power and other processing parameters unchanged, the morphology, density a... Selective laser sintering (SLS) is a new process to prepare the polystyrene (PS)/Al2O3 nanocomposites. In this paper, with different laser power and other processing parameters unchanged, the morphology, density and mechanical properties of the sintered specimens were investigated. It was found that nano-sized inorganic particles are uniformly located in the PS matrix and the maximum density of the sintered specimens with pure PS powder reaches 1.07 g/cm^3, higher than 1.04 g/cm^3 that of the sintered specimens with mixture powder. Due to strengthening and toughness of the nano-sized Al2O3 inorganic particles, the maximum notched impact strength and tensile strength of the sintered part mixed with nano-sized inorganic particles are improved greatly from 7.5 to 12.1 kJ/m^2 and from 6.5 to 31.2 MPa, respectively, under the same sintering condition. 展开更多
关键词 Selective laser sintering (SLS) NANOCOMPOSITES Polystyrene (PS) Nano-Al2O3 laser power Mechanical properties MORPHOLOGY
下载PDF
Investigating on casting mold (or core) making with coated sand by the selected laser sintering 被引量:6
4
作者 Zitian FAN Naiyu HUANG +1 位作者 Yan LI Zhili LIU 《China Foundry》 SCIE CAS 2004年第2期122-126,共5页
Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, l... Using a special coated sand as the material of the selected laser sintering (SLS), the authors test and investigate the strength change of the test samples in terms of different sintering parameters (scanning speed, laser power, sintering thickness, and so on). The characteristics of coated sand hardening by laser beam are analyzed. The sintered mold (or core) for given casting is poured with molten metal. 展开更多
关键词 rapid prototyping selected laser sintering(SLS) laser scanning casting mold(core) technological parameters
下载PDF
Rapid casting technology based on selective laser sintering 被引量:6
5
作者 Li Yang Shi-yan Tang +2 位作者 Zi-tian Fan Wen-ming Jiang Xin-wang Liu 《China Foundry》 SCIE CAS 2021年第4期296-306,共11页
Selective laser sintering(SLS),as a kind of additive manufacturing technology,which uses a laser beam to scan and heat powder material layer by layer to form parts(models),is widely used in the field of casting,mainly... Selective laser sintering(SLS),as a kind of additive manufacturing technology,which uses a laser beam to scan and heat powder material layer by layer to form parts(models),is widely used in the field of casting,mainly for preparing casting coated sand cores,investment casting patterns,etc.The SLS technique facilitates rapid casting and shortens the casting production periods by eliminating mold preparation.In this study,we reached conclusions for the basic principles and characteristics of SLS methods,and focused on the research status,key technology and development trend of SLS in the fields of forming coated sand-casting molds and investment casting patterns. 展开更多
关键词 selective laser sintering additive manufacturing rapid casting coated sand investment casting pattern
下载PDF
Advances in selective laser sintering of polymers 被引量:4
6
作者 Wei Han Lingbao Kong Min Xu 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第4期20-56,共37页
Polymers are widely used materials in aerospace,automotive,construction,medical devices and pharmaceuticals.Polymers are being promoted rapidly due to their ease of manufacturing and improved material properties.Resea... Polymers are widely used materials in aerospace,automotive,construction,medical devices and pharmaceuticals.Polymers are being promoted rapidly due to their ease of manufacturing and improved material properties.Research on polymer processing technology should be paid more attention to due to the increasing demand for polymer applications.Selective laser sintering(SLS)uses a laser to sinter powdered materials(typical polyamide),and it is one of the critical additive manufacturing(AM)techniques of polymer.It irradiates the laser beam on the defined areas by a computer-aided design three-dimensional(3D)model to bind the material together to create a designed 3D solid structure.SLS has many advantages,such as no support structures and excellent mechanical properties resembling injection moulded parts compared with other AM methods.However,the ability of SLS to process polymers is still affected by some defects,such as the porous structure and limited available types of SLS polymers.Therefore,this article reviews the current state-of-the-art SLS of polymers,including the fundamental principles in this technique,the SLS developments of typical polymers,and the essential process parameters in SLS.Furthermore,the applications of SLS are focused,and the conclusions and perspectives are discussed. 展开更多
关键词 selective laser sintering additive manufacturing laser powder bed fusion 3D printing POLYMER
下载PDF
Prediction of Sintering Strength for Selective Laser Sintering of Polystyrene Using Artificial Neural Network 被引量:4
7
作者 王传洋 姜宁 +2 位作者 陈再良 陈瑶 董渠 《Journal of Donghua University(English Edition)》 EI CAS 2015年第5期825-830,共6页
In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser... In the present work,a study is made to investigate the effects of process parameters,namely,laser power,scanning speed,hatch spacing, layer thickness and powder temperature, on the tensile strength for selective laser sintering( SLS) of polystyrene( PS). Artificial neural network( ANN) methodology is employed to develop mathematical relationships between the process parameters and the output variable of the sintering strength. Experimental data are used to train and test the network. The present neural network model is applied to predicting the experimental outcome as a function of input parameters within a specified range. Predicted sintering strength using the trained back propagation( BP) network model showed quite a good agreement with measured ones. The results showed that the networks had high processing speed,the abilities of error-correcting and self-organizing. ANN models had favorable performance and proved to be an applicable tool for predicting sintering strength SLS of PS. 展开更多
关键词 selective laser sintering(SLS) polystyrene(PS) STRENGTH artificial neural network(ANN)
下载PDF
Compact Co3O4/Co in-situ nanocomposites prepared by pulsed laser sintering as anode materials for lithium-ion batteries 被引量:2
8
作者 Wenwu Zhong Xiaohua Huang +2 位作者 Yan Lin Yiqi Cao Zongpeng Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期386-390,共5页
With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion ... With the development of portable electronic devices, electric vehicles, and power storage systems, the demand for rechargeable batteries with high energy density is growing rapidly [1–5]. In the field of lithium-ion batteries, the unconventional anode materials such as tin, silicon, metallic lithium, and transition-metal oxides have been extensively studied due to the high capacity, but they are still inapplicable because of the low initial coulombic efficiency(ICE) and/or the poor cycling stability [5–9]. 展开更多
关键词 Transition-metal oxide Pulsed laser sintering ANODE Lithium-ion battery
下载PDF
IGNITING SHS BY LASER AND ITS APPLICATION TO SELECTIVE LASER SINTERING OF METALLIC POWDER MATERIAL 被引量:1
9
作者 Y.S.Shi S.C.Chen X.L.Lu S.H.Huang 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2004年第5期694-704,共11页
How to directly fabricate metallic functional parts with selective laser sintering (SLS) process is a potential technique that scientists are researching. Existent problems during directly fabricating metal part by us... How to directly fabricate metallic functional parts with selective laser sintering (SLS) process is a potential technique that scientists are researching. Existent problems during directly fabricating metal part by use of SLS are analyzed. For the sake of solving the problems, a new idea of adding self-propagating high-temperature synthesis (SHS) material into metallic powder material to form new type of SLS metallic powder material is put forward. This powder material can release controllable amount of heat during its interaction with the laser beam energy to reduce the requirement to laser power during directly sintering metallic part, to prolong the time of metallic liquid phase existing, and to improve the intensity and accuracy of SLS part. For this reason, SHS material′s interaction with the CO2 laser beam energy is researched, which proves that CO2 laser beam energy may instantly ignite SHS reaction. On the basis of the above-mentioned researches, the effect of sintering the metal powder material mixing SHS material with CO2 laser is also researched, which shows: there is an optimal blending ratio of various material in the new metallic powder material. Under the optimal blending ratio and SLS process parameters, this new metallic powder material can indeed release amount of heat and SHS reaction may be controlled within the laser sintering. This research result makes it possible that the metallic part is directly sintered with small CO2 laser (less than 50W), which may greatly reduce the volume, cost and running expenditure of SLS machine, be propitious to application. 展开更多
关键词 selective laser sintering (SLS) self-propagating high-temperaturesynthesis (SHS) ignition time metallic powder material metallic part
下载PDF
Prediction and Analysis of Post-Treatment of Sustainable Walnut Shell/Co-PES Parts by Laser Sintering 被引量:1
10
作者 Yueqiang Yu Suling Wang +2 位作者 Minzheng Jiang Yanling Guo Ting Jiang 《Journal of Renewable Materials》 SCIE EI 2021年第2期351-364,共14页
In order to enhance the strength of sustainable walnut shell/Co-PES(WSPC)sintered parts,wax-filtrated posttreatment was carried out.The effects of treating fluid temperature,preheating time and immersion time on the b... In order to enhance the strength of sustainable walnut shell/Co-PES(WSPC)sintered parts,wax-filtrated posttreatment was carried out.The effects of treating fluid temperature,preheating time and immersion time on the bending strength of WSPC wax-filtrated parts were analyzed by single factor analysis method.To obtain an accurate model for predicting the bending strength of the WSPC wax-filtrated part,the experiments were involved by using Box-Behnken design(BBD).Main parameters,such as treating fluid temperature,preheating time and immersion time,and their interactive effects were analyzed through analysis of variance(ANOVA)and graphical contours.The results demonstrated that all parameters’direct effects were significant to bending strength of the WSPC wax-filtrated part.Its optimum value was 5.0 MPa when the treating fluid temperature of 70°C,preheating time of 50 min,and immersion time of 20 s.The predicted models effectively validated had good predicting accuracy.The WSPC wax-filtrated part using optimal processing parameters was processed by investment casting,and then the metal casting of dimensional stability and smooth surface was obtained.Investment casting was done using WSPC wax-filtrated parts under optimal process parameters and then metal parts with stable structure size and smooth surface can be obtained,which indicates that WSPC material can be used for investment casting. 展开更多
关键词 Agricultural and forestry wastes three-dimensional printing selective laser sintering post processing response surface methodology
下载PDF
A Comparison between Direct and Indirect Laser Sintering of Metals
11
作者 Montasser M.Dewidar Jae-Kyoo LIM K.W.Dalgarno 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第2期227-232,共6页
Layer manufacture technologies are gaining increasing attention in the manufacturing for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produc... Layer manufacture technologies are gaining increasing attention in the manufacturing for the production of polymer mould tooling. Layer manufacture techniques can be used in this potential manufacturing area to produce tooling either indirectly or directly, and powder metal based layer manufacture systems are considered as an effective way of producing rapid tooling. Mechanical properties and accuracy are critical for tooling. This paper reports the results of an experimental study examining the potential of layer manufacturing processes to deliver production tooling for polymer manufacture. A comparison between indirectly selective laser sintering and directly selective laser sintering to provide the tooling was reported. Three main areas were addressed during the study: mechanical strength, accuracy, and build rate. Overviews of the results from the studies were presented. 展开更多
关键词 Selective laser sintering Layer manufacture Mould tooling Rapid tooling
下载PDF
Direct Slicing Based on Material Performance and Process Parameters for Selective Laser Sintering
12
作者 MA Liang BIN Hong-zan 《International Journal of Plant Engineering and Management》 2006年第4期221-226,共6页
Direct slicing from GAD models to generate sectional contours of the part to be sintered for Selective Laser Sintering (SLS) may overcome inherent disadvantages of using a Stereo Lithography (STL) format. In this ... Direct slicing from GAD models to generate sectional contours of the part to be sintered for Selective Laser Sintering (SLS) may overcome inherent disadvantages of using a Stereo Lithography (STL) format. In this paper, a direct slicing procedure is proposed for Selective Laser Sintering based on material performance and process parameters. Slicing thickness depends on the 3 D geometric model, material performance and process parameters. The relationship among material performance, process parameters and the largest slicing thickness is established using analysis of a sintering temperature field. A dynamic linked library is developed to realize direct slicing from a CAD model. 展开更多
关键词 selective laser sintering SLS) direct slicing slicing thickness
下载PDF
Microstructural tailoring,mechanical and thermal properties of SiC composites fabricated by selective laser sintering and reactive melt infiltration 被引量:3
13
作者 Xiao Chen Jie Yin +3 位作者 Longzhi Huang Sea-Hoon Lee Xuejan Liu Zhengren Huang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第4期830-847,共18页
Poor flowability of printable powders and long preparation cycles are the main challenges in the selective laser sintering(SLS)of chopped carbon fiber(C_(f))reinforced silicon carbide(SiC)composites with complex struc... Poor flowability of printable powders and long preparation cycles are the main challenges in the selective laser sintering(SLS)of chopped carbon fiber(C_(f))reinforced silicon carbide(SiC)composites with complex structures.In this study,we develop an efficient and novel processing route in the fabrication of lightweight SiC composites via the SLS of phenolic resin(PR)and Cr powders with the addition of a-SiC particles combined with the one-step reactive melt infiltration(RMI).The effects of a-SiC addition on the microstructural evolution of the C_(f)/SiC/PR printed bodies,C_(f)/SiC/C green bodies,and derived SiC composites were investigated.The results indicate that the added a-SiC particles play an important role in enhancing the flowability of raw powders,reducing the porosity.increasing the reliability of the C/SiC/C green bodies,and contributing to improving the microstructure homogeneity and mechanical properties of the SiC composites.The maximum density,flexural strength,and fracture toughness(Kic)of the SiC composites are 2.749±0.006 g·cm^(3),266±5 MPa,and 3.30±0.06 MPa-m,respectively.The coefficient of thermal expansion(CTE,a)of the SiC composites is approximately 4.29×10^(-6)K^(-1)from room temperature(RT)to 900℃,and the thermal conductivity(x)is in the range of 80.15-92.48 W·m^(-1)·K^(-1)at RT.The high-temperature strength of the SiC composites increase to 287±18 MPa up to 1200℃.This study provides a novel as well as feasible tactic for the preparation of high-quality printable powders as well as lightweight,high-strength,and high-x SiC composites with complex structures by the SLS and RMI. 展开更多
关键词 chopped carbon fiber(C_(f)) microstructural tailoring selective laser sintering(SLS) mechanical properties thermal properties
原文传递
Simulation Analysis of Stress Field of Walnut Shell Composite Powder in Laser Additive Manufacturing Forming 被引量:1
14
作者 Yueqiang Yu Tingang Ma +7 位作者 Suling Wang Minzheng Jiang Yanling Guo Ting Jiang Shuaiqi Huang Ziming Zheng Bo Yan Jiyuan Lv 《Journal of Renewable Materials》 SCIE EI 2023年第1期333-347,共15页
A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a ... A calculation model of stress field in laser additive manufacturing of walnut shell composite powder(walnut shell/Co-PES powder)was established.The DFLUX subroutine was used to implement the moveable application of a double ellipsoid heat source by considering the mechanical properties varying with temperature.The stress field was simulated by the sequential coupling method,and the experimental results were in good accordance with the simulation results.In addition,the distribution and variation of stress and strain field were obtained in the process of laser additive manufacturing of walnut shell composite powder.The displacement of laser additive manufacturing walnut shell composite parts gradually decreased with increasing preheating temperature,decreasing laser power and increasing scanning speed.During the cooling process,the displacement of laser additive manufacturing of walnut shell composite parts gradually increased with the increasing preheating temperature,decreasing scanning speed and increasing laser power. 展开更多
关键词 Selective laser sintering agricultural and forestry wastes walnut shell stress field warping deformation
下载PDF
Laser sintering of Cu nanoparticles on PET polymer substrate for printed electronics at different wavelengths and process conditions
15
作者 Juan Carlos HERNANDEZ-CASTANEDA Boon Keng LOK Hongyu ZHENG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2020年第2期303-318,共16页
This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used... This study explores the feasibility of different laser systems to sinter screen-printed lines from nonconductive copper nanoparticles(Cu NPs)on polyethylene terephthalate polymer film.These materials are commonly used in manufacturing functional printed electronics for large-area applications.Here,optical and thermal characterization of the materials is conducted to identify suitable laser sources and process conditions.Direct diode(808 nm),Nd:YAG(1064 nm and second harmonic of 532 nm),and ytterbium fiber(1070 nm)lasers are explored.Optimal parameters for sintering the Cu NPs are identified for each laser system,which targets low resistivity and high processing speed.Finally,the quality of the sintered tracks is quantified,and the laser sintering mechanisms observed under different wavelengths are analyzed.Practical considerations are discussed to improve the laser sintering process of Cu NPs. 展开更多
关键词 laser sintering copper nanoparticles printed electronics
原文传递
Laser sintering of carbon nanotube-reinforced ceramic nanocomposites
16
作者 Yibo Gao Fei Liang +7 位作者 Gregory Freihofer Benxin Wu Bharathi Mohan Seetha Raghavan Jihua Gou Shuyou Li Brian Albee Sandra Whaley Bishnoi 《International Journal of Smart and Nano Materials》 SCIE EI 2011年第4期219-229,共11页
The fabrication of carbon nanotube(CNT)-reinforced ceramic nanocomposites through laser sintering has been rarely studied,and the fabrication feasibility has been rarely tested.Laser sintering is a flexible,localized ... The fabrication of carbon nanotube(CNT)-reinforced ceramic nanocomposites through laser sintering has been rarely studied,and the fabrication feasibility has been rarely tested.Laser sintering is a flexible,localized and high-precision process,which can also potentially produce coatings or parts with complicated shapes and/or spatially controlled compositions.Therefore,compared with other technologies laser sintering has its own advantages.Experimental investigations reported in this paper have confirmed the feasibility of fabricating CNT-reinforced ceramic nanocomposites through laser sintering of ceramic nanoparticles and CNTs.The studies show that laser sintering can induce the agglomeration of ceramic nanoparticles into a relatively more continuous ceramic phase,and during the sintering process CNTs are well preserved without any obvious quality degradation,and they are also bonded with the ceramic phase after laser sintering. 展开更多
关键词 laser sintering carbon nanotube reinforcement ceramic nanocomposite
原文传递
Fe/Cu gradient composite materials prepared by laser sintering
17
作者 Li, YL Guan, QF +1 位作者 Wang, CS Hu, JD 《Chinese Science Bulletin》 SCIE EI CAS 1997年第23期2014-2016,共3页
USLNG CO<sub>2</sub> laser beam as a heat source to sinter whole P/M (powder metallurgy) green com-pact is a new technique. As reported in refs. [1--4], the advantages of the laser sintering ofCu-base an... USLNG CO<sub>2</sub> laser beam as a heat source to sinter whole P/M (powder metallurgy) green com-pact is a new technique. As reported in refs. [1--4], the advantages of the laser sintering ofCu-base and Fe-base green compact were characterized by rapid sintering rate, no contamina-tion, fine structure and good properties. 展开更多
关键词 CU Fe/Cu gradient composite materials prepared by laser sintering
原文传递
Oxygen vacancy boosting Fenton reaction in bone scaffold towards fighting bacterial infection
18
作者 Cijun Shuai Xiaoxin Shi +2 位作者 Feng Yang Haifeng Tian Pei Feng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期296-311,共16页
Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe case... Bacterial infection is a major issue after artificial bone transplantation due to the absence of antibacterial function of bone scaffold,which seriously causes the transplant failure and even amputation in severe cases.In this study,oxygen vacancy(OV)defects Fe-doped Ti O2(OV-FeTiO2)nanoparticles were synthesized by nano TiO2and Fe3O4via high-energy ball milling,which was then incorporated into polycaprolactone/polyglycolic acid(PCLGA)biodegradable polymer matrix to construct composite bone scaffold with good antibacterial activities by selective laser sintering.The results indicated that OV defects were introduced into the core/shell-structured OV-FeTiO2nanoparticles through multiple welding and breaking during the high-energy ball milling,which facilitated the adsorption of hydrogen peroxide(H2O2)in the bacterial infection microenvironment at the bone transplant site.The accumulated H2O2could amplify the Fenton reaction efficiency to induce more hydroxyl radicals(·OH),thereby resulting in more bacterial deaths through·OH-mediated oxidative damage.This antibacterial strategy had more effective broad-spectrum antibacterial properties against Gram-negative Escherichia coli(E.coli)and Gram-positive Staphylococcus aureus(S.aureus).In addition,the PCLGA/OV-FeTiO2scaffold possessed mechanical properties that match those of human cancellous bone and good biocompatibility including cell attachment,proliferation and osteogenic differentiation. 展开更多
关键词 bacterial infection bone scaffold selective laser sintering Fenton reaction antibacterial properties
下载PDF
Phase structure and electrochemical properties of laser sintered La_2MgNi_9 hydrogen storage electrode alloys 被引量:3
19
作者 斯庭智 张庆安 刘 宁 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期598-603,共6页
Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount... Phase structure and electrochemical properties of laser sintered La2MgNi9 alloys were studied. The sintered alloys contained a main phase, LaNi5, and a ternary La-Mg-Ni phase, with a PuNi3 structure and a small amount of LaMgNi4. The ternary La-Mg-Ni phase with a PuNi3 structure had the composition of La1.8Mg1.2Ni9 and La2MgNi9, for alloys laser sintered at 1000 and 1400 W, respectively. Owing to further reactions between LaNi5 and LaMgNi4, the amount of the PuNi3 phase increased for alloys sintered at 1400 W. Both alloys had good activation property (three charge/discharge cycles). The discharge capacities of the sintered alloys were 321.8 and 344.8 mAh/g, respectively. Compared with the alloy laser sintered at 1000 W, the poor cyclic stability of the alloy sintered at 1400 W was mainly attributed to the lower corrosion resistance of the La2MgNi9 phase. 展开更多
关键词 laser sintering La2MgNi9 alloy phase structure electrochemical property rare earths
下载PDF
Microstructure of Selective Laser Sintered Polyamide 被引量:2
20
作者 林柳兰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2003年第3期60-63,共4页
The selective laser sintering (SLS) was used to prepare components from modified polyamide (PA) powder.The behaviour of the sintering process was analyzed.The influences of the fill laser power,powder bed temperature ... The selective laser sintering (SLS) was used to prepare components from modified polyamide (PA) powder.The behaviour of the sintering process was analyzed.The influences of the fill laser power,powder bed temperature and powder thickness were discussed in detail.By means of SEM,the morphology and the heat influence were analyzed.Results show that the powders were fused thoroughly which allowed a more dense structure to be built at a powder bed temperature of 98℃,fill laser power of 12W,slice thickness of 0.10mm and a default scanning speed of 1700mm/s. 展开更多
关键词 selective laser sintering POLYAMIDE POWDER MICROSTRUCTURE
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部