We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering(ICS)X-ray source.By adding a short ...We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering(ICS)X-ray source.By adding a short standing-wave buncher between the RF gun and first booster in a conventional S-band photo-injector,electron bunches with a 500 pC charge can be compressed to the sub-picosecond level with very limited input RF power and an unchanged basic layout of the photo-injector.Beam dynamics analysis indicates that fine tuning of the focusing strength of the gun and linac solenoid can well balance additional focusing provided by the standing wave buncher and generate a well-compensated transverse emittance.Thorough bunching dynamics simulations with different operating conditions of the buncher show that a buncher with more cells and a moderate gradient is suitable for simultaneously obtaining a short bunch duration and low emittance.In a typical case of a 9-cell buncher with a 38 MV/m gradient,an ultrashort bunch duration of 0.5 ps(corresponding to a compression ratio of>5)and a low emittance of<1 mm mrad can be readily obtained for a 500 pC electron pulse.This feasible ballistic bunching scheme will facilitate the implementation of an ultrashort pulse mode inverse Compton scattering X-ray source on most existing S-band photo-injectors.展开更多
Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of th...Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.展开更多
Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-...Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser-electron interaction.展开更多
Laser Compton scattering(LCS) can generate X-rays or γ-rays with high brightness and easy controlled polarization by applying high-peak-power laser pulses to relativistic electron bunches. One of the most promising a...Laser Compton scattering(LCS) can generate X-rays or γ-rays with high brightness and easy controlled polarization by applying high-peak-power laser pulses to relativistic electron bunches. One of the most promising approaches to short pulsed X-ray sources is the laser synchrotron source. It is based on LCS between picoseconds relativistic electron bunches and picoseconds laser pulses. A project of Shanghai laser electron gamma source with LCS method has been proposed on Shanghai synchrotron radiation facility. Before that,a prototype has been developed in the beamline of the linear accelerator at the Shanghai Institute of Applied Physics,Chinese Academy of Sciences. The LCS experiment was carried out by using the 107 MeV,5 Hz,1 ns,0.1 nC electron bunches from the linear accelerator and the 18 ns,10 MW peak power,Nd∶YAG laser pulses. In this communication,we describe the details and report the first results of this experiment.展开更多
Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applicatio...Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applications.These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes.In this article,we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths^1 nm.Compared to other methods,this approach is easier to implement,cost-effective,and more efficient.展开更多
We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode opti...We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.展开更多
Laser Compton light sources are potential candidates for the next generation of high-brightness X or γ-ray sources. When increasing the laser power to obtain intense X-ray laser, nonlinear Compton scattering happens....Laser Compton light sources are potential candidates for the next generation of high-brightness X or γ-ray sources. When increasing the laser power to obtain intense X-ray laser, nonlinear Compton scattering happens. Nonlinear Compton scattering of linearly polarized laser beam is discussed in this paper. A complete transition probability formula is introduced and the polarization properties of final photons are discussed for different conditions.展开更多
High brightness γ-rays produced by laser Compton scattering(LCS) are ideal probes for the study of nucleon and nuclear structure. We propose such a γ-ray source using the backscattering of a laser from the bright el...High brightness γ-rays produced by laser Compton scattering(LCS) are ideal probes for the study of nucleon and nuclear structure. We propose such a γ-ray source using the backscattering of a laser from the bright electron beam produced by the linac of the Shanghai Soft X-ray Free-electron Laser(SXFEL) test facility at the Shanghai Institute of Applied Physics(SINAP). The performance is optimized through theoretical analysis and benchmarked with 4D Monte-Carlo simulations. The peak brightness of the source is expected to be larger than2 × 1022photons/(mm2mrad2s 0.1%BW) and photon energy ranges from 3.7 Me V to 38.9 Me V. Its performance, compared to Extreme Light Infrastructure-Nuclear Physics(ELI-NP), and the Shanghai Laser-Electron Gamma-ray Source(SLEGS), is given. The potential for basic and applied research is also briefly outlined.展开更多
基金supported by National Natural Science Foundation of China(NSFC)(Nos.12005211,11905210,11975218 and 11805192).
文摘We report our recent progress in the design and simulation of a high-brightness S-band photo-injector with a ballistic bunching scheme aimed at driving an inverse Compton scattering(ICS)X-ray source.By adding a short standing-wave buncher between the RF gun and first booster in a conventional S-band photo-injector,electron bunches with a 500 pC charge can be compressed to the sub-picosecond level with very limited input RF power and an unchanged basic layout of the photo-injector.Beam dynamics analysis indicates that fine tuning of the focusing strength of the gun and linac solenoid can well balance additional focusing provided by the standing wave buncher and generate a well-compensated transverse emittance.Thorough bunching dynamics simulations with different operating conditions of the buncher show that a buncher with more cells and a moderate gradient is suitable for simultaneously obtaining a short bunch duration and low emittance.In a typical case of a 9-cell buncher with a 38 MV/m gradient,an ultrashort bunch duration of 0.5 ps(corresponding to a compression ratio of>5)and a low emittance of<1 mm mrad can be readily obtained for a 500 pC electron pulse.This feasible ballistic bunching scheme will facilitate the implementation of an ultrashort pulse mode inverse Compton scattering X-ray source on most existing S-band photo-injectors.
基金supported by the National Natural Science Foundation of China(Nos.12375157,12027902,and 11905011)。
文摘Purpose To propose a method for simultaneous fluorescence and Compton scattering computed tomography by using linearly polarized X-rays.Methods Monte Carlo simulations were adopted to demonstrate the feasibility of the proposed method.In the simulations,the phantom is a polytetrafluoroethylene cylinder inside which are cylindrical columns containing aluminum,water,and gold(Au)-loaded water solutions with Au concentrations ranging between 0.5 and 4.0 wt%,and a parallel-hole collimator imaging geometry was adopted.The light source was modeled based on a Thomson scattering X-ray source.The phantom images for both imaging modalities were reconstructed using a maximumlikelihood expectation maximization algorithm.Results Both the X-ray fluorescence computed tomography(XFCT)and Compton scattering computed tomography(CSCT)images of the phantom were accurately reconstructed.A similar attenuation contrast problem for the different cylindrical columns in the phantom can be resolved in the XFCT and CSCT images.The interplay between XFCT and CSCT was analyzed,and the contrast-to-noise ratio(CNR)of the reconstruction was improved by correcting for the mutual influence between the two imaging modalities.Compared with K-edge subtraction imaging,XFCT exhibits a CNR advantage for the phantom.Conclusion Simultaneous XFCT and CSCT can be realized by using linearly polarized X-rays.The synergy between the two imaging modalities would have an important application in cancer radiation therapy.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.10902010 and 10975121)the Foundation of China Academy of Engineering Physics(CAEP)(Grant No.2009A0102003)the Foundation of Laboratory of Science and Technology on Plasma Physics,RCLF,CAEP(Grant No.9140C680305120C68252)
文摘Energy spectra, angular distributions, and temporal profiles of the photons produced by an all-optical Thomson scat- tering X-ray source are explored through numerical simulations based on the parameters of the SILEX-I laser system (800 nm, 30 fs, 300 TW) and the previous wakefield acceleration experimental results. The simulation results show that X-ray pulses with a duration of 30 fs and an emission angle of 50 mrad can be produced from such a source. Using the optimized electron parameters, X-ray pulses with better directivity and narrower energy spectra can be obtained. Besides the electron parameters, the laser parameters such as the wavelength, pulse duration, and spot size also affect the X-ray yield, the angular distribution, and the maximum photon energy, except the X-ray pulse duration which is slightly changed for the case of ultrafast laser-electron interaction.
基金Century Programof Chinese Academy of Sciences(2601701)Knowledge Innovation Project of Chinese Academy ofSciences(KJCX2-SW-N13)Pujiang Talent Project of Shanghai Science and Technology Committee(06PJ14114)
文摘Laser Compton scattering(LCS) can generate X-rays or γ-rays with high brightness and easy controlled polarization by applying high-peak-power laser pulses to relativistic electron bunches. One of the most promising approaches to short pulsed X-ray sources is the laser synchrotron source. It is based on LCS between picoseconds relativistic electron bunches and picoseconds laser pulses. A project of Shanghai laser electron gamma source with LCS method has been proposed on Shanghai synchrotron radiation facility. Before that,a prototype has been developed in the beamline of the linear accelerator at the Shanghai Institute of Applied Physics,Chinese Academy of Sciences. The LCS experiment was carried out by using the 107 MeV,5 Hz,1 ns,0.1 nC electron bunches from the linear accelerator and the 18 ns,10 MW peak power,Nd∶YAG laser pulses. In this communication,we describe the details and report the first results of this experiment.
基金supported by the National Development and Reform Commission(20132347)National Basic Research Program of China(No.2015CB859700)。
文摘Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applications.These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes.In this article,we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths^1 nm.Compared to other methods,this approach is easier to implement,cost-effective,and more efficient.
基金Supported by the National Natural Sciences Foundation of China (10735050)
文摘We present two types of optics for the lattice of a compact storage ring for a Compton X-ray source. The optics design for different operation modes of the storage ring are discussed in detail. For the pulse mode optics, an IBS-suppression scheme is applied to optimize the optics for lower IBS emittance growth rate; as for the steady mode, the method to control momentum compact factor is adopted [Gladkikh P, Phys. Rev. ST Accel. Beams 8, 050702] to obtain stability of the electron beam.
基金Supported by National Natural Science Foundation of China (10935011)Marjor State Basic Research DevelopmentProgram of China (2002CB713600)
文摘Laser Compton light sources are potential candidates for the next generation of high-brightness X or γ-ray sources. When increasing the laser power to obtain intense X-ray laser, nonlinear Compton scattering happens. Nonlinear Compton scattering of linearly polarized laser beam is discussed in this paper. A complete transition probability formula is introduced and the polarization properties of final photons are discussed for different conditions.
基金Supported by the Major State Basic Research Development Program of China(No.2011CB808300)the Shanghai Natural Science Foundation(No.13ZR1464700)the Knowledge Innovation Project of the Chinese Academy of Sciences(No.255015061)
文摘High brightness γ-rays produced by laser Compton scattering(LCS) are ideal probes for the study of nucleon and nuclear structure. We propose such a γ-ray source using the backscattering of a laser from the bright electron beam produced by the linac of the Shanghai Soft X-ray Free-electron Laser(SXFEL) test facility at the Shanghai Institute of Applied Physics(SINAP). The performance is optimized through theoretical analysis and benchmarked with 4D Monte-Carlo simulations. The peak brightness of the source is expected to be larger than2 × 1022photons/(mm2mrad2s 0.1%BW) and photon energy ranges from 3.7 Me V to 38.9 Me V. Its performance, compared to Extreme Light Infrastructure-Nuclear Physics(ELI-NP), and the Shanghai Laser-Electron Gamma-ray Source(SLEGS), is given. The potential for basic and applied research is also briefly outlined.