The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measu...The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measured by X-ray diffraction method. Fatigue experiments of specimens with and without LSP were performed, and the microstructural features of fracture of specimens were characterized by scanning electron microscopy (SEM). The results indicate that the compressive residual stress can be induced into the surface of specimen, and the fatigue life of the specimen with LSP is 3.5 times as long as that of specimen without LSP. The location of fatigue crack initiation is transferred from the top surface to the sub-surface after LSP, and the fatigue striation spacing of the treated specimen during the expanding fatigue crack is narrower than that of the untreated specimen. Furthermore, the diameters of the dimples on the fatigue crack rupture zone of the specimen with LSP are relatively bigger, which is related to the serious plastic deformation in the material with LSP.展开更多
Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030...Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.展开更多
The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion.While,in contrast to the cyl...The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion.While,in contrast to the cylindrical hohlraums,the narrow space between the laser beams and the spherical hohlraum wall is usually commented.In this Letter,we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole(LEH)can dramatically improve the laser propagation inside the spherical hohlraums.In addition,the laser beam deflection in the hohlraum is observed for the first time in the experiments.Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs.Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.展开更多
Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3...Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.展开更多
The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the tr...The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.展开更多
A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of...A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.展开更多
In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power a...In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.展开更多
Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:1...Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:10pt;font-family:"">,</span><span style="white-space:normal;font-size:10pt;font-family:""> prolonged usage may cause the initiation of defects in the pipeline. These defects occur due to the formed salt deposits, chemical reaction happens between the inner surface and the transferring substance, prevailing environmental conditions, etc. These defects, if not identified earlier may lead to significant losses to the industry. In this work, an in-line inspection system utilizes the nondestructive way for analyzing the internal defects in the petrochemical pipeline. This system consists of a pipeline inspection robot having two major units namely the visual inspection unit and the power carrier unit. The visual inspection unit makes use of a ring-type laser diode and the camera. The laser diode serves as a light source for capturing good quality images of inspection. This unit is controlled by the Arduino in the power carrier unit which provides the necessary movement throughout the pipe. The inspected images captured by the camera are further processed with the aid of NI vision assistant software. After applying the processing function parameters provided by this software, the defect location can be clearly visualized with high precision. Three sets of defects are introduced in a Polylactide (PLA) pipe based on its position and angle along the circumference of the pipe. Further, this robot system serves as a real-time interactive image synchronization system for acquiring the inspected images. By comparing the actual and calculated defect size, the error percentage obtained was less than 5%.展开更多
The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and exper...The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and experiments. By comparing the numerical analyses with the experiments, a proper numerical model was obtained. From the results of the numerical analyses and the experiments, the effects of process parameters on entrance diameters of drilled holes, shapes of the holes, taper angles of the holes and temperature distributions in the vicinity of the holes were examined quantitatively. In addition, the optimal drilling condition was estimated to improve the quality of the drilled holes.展开更多
Objective: To study the foveal displacement during the closure of idiopathic macular holes(MHs).Methods: Thirty-seven idiopathic MH patients treated by pars plana vitrectomy and internal limiting membrane peeling were...Objective: To study the foveal displacement during the closure of idiopathic macular holes(MHs).Methods: Thirty-seven idiopathic MH patients treated by pars plana vitrectomy and internal limiting membrane peeling were studied prospectively.Locations of MH center and foveal pit were measured by optic coherence tomography.Retinal displacement was observed using confocal scanning laser ophthalmoscopy.Results: A total of 40 eyes were included in this study and MHs were closed in 37 eyes(92.5%).The confocal scanning laser ophthalmoscopy showed that all of the retinal capillaries in the superior, inferior, nasal and temporal sides of the MHs moved toward the optic nerve head(ONH).The optic coherence tomography results showed that the mean nasal displacements of foveal pits were(102.9±61.2),(109.6±53.1), and(137.0±52.0) μm at 3, 6 and 12 months, respectively.And the mean vertical displacements were(55.9±49.4),(61.4±57.8) and(67.8±54.3) μm, respectively.Post-operative foveal pits were located in the nasal side of the MH centers.The extension of retina and nasal to the MH were in opposite directions: the nasal hole margin moved toward the MH, but the retina located closer to the ONH moved toward the ONH.The fellow eyes of three patients developed into idiopathic MH during the follow-up period and operations were performed for all of the three patients.Conclusion: Our results showed that center of macula does not move when an idiopathic MH develops, but it moves toward ONH during closure of hole; thus, new fovea is in nasal side of original fovea.展开更多
The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations.It is shown that longer dephasing time will lead to multiple pulses generation from the laser.The dep...The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations.It is shown that longer dephasing time will lead to multiple pulses generation from the laser.The dependence of output field on modulation length and radio-frequency parameters is obtained.In order to achieve short pulse generation,the DC bias should close to threshold value and modulation length should be shorter than 0.256 mm.The output pulse is unstable and the envelope shows many oscillations in the presence of spatial hole burning,resulting destabilization of mode-locking.展开更多
基金Project (51175002) supported by the National Natural Science Foundation of ChinaProject (090414156) supported by the Natural Science Foundation of Anhui Province,China
文摘The fatigue properties of laser shock processing (LSP) on both side surfaces of fastener hole with diameter of 3 mm in the LY12CZ aluminum alloy specimens were investigated. The superficial residual stress was measured by X-ray diffraction method. Fatigue experiments of specimens with and without LSP were performed, and the microstructural features of fracture of specimens were characterized by scanning electron microscopy (SEM). The results indicate that the compressive residual stress can be induced into the surface of specimen, and the fatigue life of the specimen with LSP is 3.5 times as long as that of specimen without LSP. The location of fatigue crack initiation is transferred from the top surface to the sub-surface after LSP, and the fatigue striation spacing of the treated specimen during the expanding fatigue crack is narrower than that of the untreated specimen. Furthermore, the diameters of the dimples on the fatigue crack rupture zone of the specimen with LSP are relatively bigger, which is related to the serious plastic deformation in the material with LSP.
基金Funded by National Natural Science Foundation of China(Nos.51332004,51302220,51472201)the Major National Scientific Instrument and Equipment Development Project(No.2011YQ12007504)+1 种基金Natural Science Foundation of Shaanxi Province(No.2014JQ6197)the Foundation Research of Northwestern Polytechnical University(No.JC20120204)
文摘Silicon infiltrated silicon carbide (Si-SiC) ceramics, as high hardness materials, are difficult to machine, especially drilling micro-holes. In this study, the interaction of picosecond laser pulses (1 ps at 1 030 nm) with Si-SiC ceramics was investigated. Variations of the diameter and depth of circular holes with the growth of the laser energy density were obtained. The results indicate that the increase of machining depth follows a nonlinear relation with the increasing of laser energy density, while the diameter has little change with that. Moreover, it is found that some debris and particles are deposited around and inside the holes and waviness is in the entrance and at walls of the holes after laser processing.
基金supported by the Development Foundation of CAEP(2013A0102002)the National Natural Science Foundation of China(Grant Nos.11405011 and 11475033).
文摘The octahedral spherical hohlraums have natural superiority in maintaining high radiation symmetry during the entire capsule implosion process in indirect drive inertial confinement fusion.While,in contrast to the cylindrical hohlraums,the narrow space between the laser beams and the spherical hohlraum wall is usually commented.In this Letter,we address this crucial issue and report our experimental work conducted on the SGIII-prototype laser facility which unambiguously demonstrates that a simple design of cylindrical laser entrance hole(LEH)can dramatically improve the laser propagation inside the spherical hohlraums.In addition,the laser beam deflection in the hohlraum is observed for the first time in the experiments.Our 2-dimensional simulation results also verify qualitatively the advantages of the spherical hohlraums with cylindrical LEHs.Our results imply the prospect of adopting the cylindrical LEHs in future spherical ignition hohlraum design.
基金National Natural Science Foundation of China(Nos.41861054,41371423,61966010)National Key R&D Program of China(No.2016YFB0502105)。
文摘Hole repair processing is an important part of point cloud data processing in airborne 3-dimensional(3D)laser scanning technology.Due to the fragmentation and irregularity of the surface morphology,when applying the 3D laser scanning technology to mountain mapping,the conventional mathematical cloud-based point cloud hole repair method is not ideal in practical applications.In order to solve this problem,we propose to repair the valley and ridge line first,and then repair the point cloud hole.The main technical steps of the method include the following points:First,the valley and ridge feature lines are extracted by the GIS slope analysis method;Then,the valley and ridge line missing from the hole are repaired by the mathematical interpolation method,and the repaired results are edited and inserted to the original point cloud;Finally,the traditional repair method is used to repair the point cloud hole whose valley line and ridge line have been repaired.Three experiments were designed and implemented in the east bank of the Xiaobaini River to test the performance of the proposed method.The results showed that compared with the direct point cloud hole repair method in Geomagic Studio software,the average repair accuracy of the proposed method,in the 16 m buffer zone of valley line and ridge line,is increased from 56.31 cm to 31.49 cm.The repair performance is significantly improved.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the Beijing Municipal Natural Science Foundation,China (Grant Nos. 4092007,4112006,4102003,and 4132006)+1 种基金the National Natural Science Foundation of China (Grant Nos. 61076044,61036002,61036009,and 60978067)the Doctoral Fund of the Ministry of Education of China (Grant No. 20121103110018)
文摘The polarization of traditional photonic crystal(PC) vertical cavity surface emitting laser(VCSEL) is uncontrollable,resulting in the bit error increasing easily.Elliptical hole photonic crystal can control the transverse mode and polarization of VCSEL efficiently.We analyze the far field divergence angle,and birefringence of elliptical hole PC VCSEL.When the ratio of minor axis to major axis b/a = 0.7,the PC VCSEL can obtain single mode and polarization.According to the simulation results,we fabricate the device successfully.The output power is 1.7 mW,the far field divergence angle is less than 10°,and the side mode suppression ratio is over 30 dB.The output power in the Y direction is 20 times that in the X direction.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2008AA03Z402)the National Natural Science Foundation of China (Grant No. 61076044)the Natural Science Foundation of Beijing,China(Grant Nos. 4092007 and 4102003)
文摘A multi-hole vertical-cavity surface-emitting laser (VCSEL) operating in stable single mode with a low threshold current was produced by introducing multi-leaf scallop holes on the top distributed Bragg-refleetor of an oxidation- confined 850 nm VCSEL. The single-mode output power of 2.6 mW, threshold current of 0.6 mA, full width of half maximum lasing spectrum of less than 0.1 nm, side mode suppression ratio of 28.4 dB, and far-field divergence angle of about 10% are obtained. The effects of different hole depths on the optical characteristics are simulated and analysed, including far-field divergence, spectrum and lateral cavity mode. The single-mode performance of this multi-hole device is attributed to the large radiation loss from the inter hole spacing and the scattering loss at the bottom of the holes, particularly for higher order modes.
基金Supported by National Key R&D Project(2017YFB0405100)National Natural Science Foundation of China(61774024/61964007)Jilin province science and technology development plan(20190302007GX)。
文摘In long-cavity edge-emitting diode lasers,longitudinal spatial hole burning(LSHB),two-photon ab⁃sorption(TPA)and free carrier absorption(FCA)are among the key factors that affect the linear increase in out⁃put power at high injection currents.In this paper,a simplified numerical analysis model is proposed for 1.06μm long-cavity diode lasers by combining TPA and FCA losses with one-dimensional(1D)rate equations.The ef⁃fects of LSHB,TPA and FCA on the output characteristics are systematically analyzed,and it is proposed that ad⁃justing the front facet reflectivity and the position of the quantum well(QW)in the waveguide layer can improve the front facet output power.
文摘Pipeline plays a vital role in transporting fluids like oils, water, and petrochemical substances for longer distances. Based on the materials they carry</span><span style="white-space:normal;font-size:10pt;font-family:"">,</span><span style="white-space:normal;font-size:10pt;font-family:""> prolonged usage may cause the initiation of defects in the pipeline. These defects occur due to the formed salt deposits, chemical reaction happens between the inner surface and the transferring substance, prevailing environmental conditions, etc. These defects, if not identified earlier may lead to significant losses to the industry. In this work, an in-line inspection system utilizes the nondestructive way for analyzing the internal defects in the petrochemical pipeline. This system consists of a pipeline inspection robot having two major units namely the visual inspection unit and the power carrier unit. The visual inspection unit makes use of a ring-type laser diode and the camera. The laser diode serves as a light source for capturing good quality images of inspection. This unit is controlled by the Arduino in the power carrier unit which provides the necessary movement throughout the pipe. The inspected images captured by the camera are further processed with the aid of NI vision assistant software. After applying the processing function parameters provided by this software, the defect location can be clearly visualized with high precision. Three sets of defects are introduced in a Polylactide (PLA) pipe based on its position and angle along the circumference of the pipe. Further, this robot system serves as a real-time interactive image synchronization system for acquiring the inspected images. By comparing the actual and calculated defect size, the error percentage obtained was less than 5%.
基金supported by a grant-in-aid of Regional Innovation Center(RIC),New Technology Development and Research Center of Laser Application in Chosun University,Korea.
文摘The object of this work is to investigate the influence of process parameters on drilling characteristics of an Al 1050 sheet with a thickness of 0.2 mm using a pulsed Nd:YAG laser through numerical analyses and experiments. By comparing the numerical analyses with the experiments, a proper numerical model was obtained. From the results of the numerical analyses and the experiments, the effects of process parameters on entrance diameters of drilled holes, shapes of the holes, taper angles of the holes and temperature distributions in the vicinity of the holes were examined quantitatively. In addition, the optimal drilling condition was estimated to improve the quality of the drilled holes.
基金supported by National Basic Research Program of China(973 Program,No.2013CB967503)National Natural Science Foundation of China(No.81170857)Shanghai Key Laboratory of Visual Impairment and Restoration,Fudan University,Shanghai,China
文摘Objective: To study the foveal displacement during the closure of idiopathic macular holes(MHs).Methods: Thirty-seven idiopathic MH patients treated by pars plana vitrectomy and internal limiting membrane peeling were studied prospectively.Locations of MH center and foveal pit were measured by optic coherence tomography.Retinal displacement was observed using confocal scanning laser ophthalmoscopy.Results: A total of 40 eyes were included in this study and MHs were closed in 37 eyes(92.5%).The confocal scanning laser ophthalmoscopy showed that all of the retinal capillaries in the superior, inferior, nasal and temporal sides of the MHs moved toward the optic nerve head(ONH).The optic coherence tomography results showed that the mean nasal displacements of foveal pits were(102.9±61.2),(109.6±53.1), and(137.0±52.0) μm at 3, 6 and 12 months, respectively.And the mean vertical displacements were(55.9±49.4),(61.4±57.8) and(67.8±54.3) μm, respectively.Post-operative foveal pits were located in the nasal side of the MH centers.The extension of retina and nasal to the MH were in opposite directions: the nasal hole margin moved toward the MH, but the retina located closer to the ONH moved toward the ONH.The fellow eyes of three patients developed into idiopathic MH during the follow-up period and operations were performed for all of the three patients.Conclusion: Our results showed that center of macula does not move when an idiopathic MH develops, but it moves toward ONH during closure of hole; thus, new fovea is in nasal side of original fovea.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFF0106302)the National Natural Science Foundation of China(Grant Nos.61975225 and 61927813)Shanghai International Cooperation Project,China(Grant No.18590780100).
文摘The pulse generation from active mode-locking terahertz quantum cascade laser is studied by Maxwell-Bloch equations.It is shown that longer dephasing time will lead to multiple pulses generation from the laser.The dependence of output field on modulation length and radio-frequency parameters is obtained.In order to achieve short pulse generation,the DC bias should close to threshold value and modulation length should be shorter than 0.256 mm.The output pulse is unstable and the envelope shows many oscillations in the presence of spatial hole burning,resulting destabilization of mode-locking.