期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion 被引量:1
1
作者 Xiaoshuang Li Dmitry Sukhomlinov Zaiqing Que 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期118-128,共11页
Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-cond... Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel.Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone.Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150%compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment. 展开更多
关键词 multi-material additive manufacturing laser-based powder bed fusion thermal diffusivity dissimilar metals copper alloy
下载PDF
Advances in polishing of internal structures on parts made by laser-based powder bed fusion
2
作者 Mingyue SHEN Fengzhou FANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2023年第1期93-114,共22页
The internal structures of metallic products are important in realizing functional applications.Considering the manufacturing of inner structures,laser-based powder bed fusion(L-PBF)is an attractive approach because i... The internal structures of metallic products are important in realizing functional applications.Considering the manufacturing of inner structures,laser-based powder bed fusion(L-PBF)is an attractive approach because its layering principle enables the fabrication of parts with customized interior structures.However,the inferior surface quality of L-PBF components hinders its productization progress seriously.In this article,process,basic forms,and applications relevant to L-PBF internal structures are reviewed comprehensively.The causes of poor surface quality and differences in the microstructure and property of the surface features of L-PBF inner structures are presented to provide a perspective of their surface characteristics.Various polishing technologies for L-PBF components with inner structures are presented,whereas their strengths and weaknesses are summarized along with a discussion on the challenges and prospects for improving the interior surface quality of L-PBF parts. 展开更多
关键词 laser-based powder bed fusion POLISHING internal structures surface quality surface features post process additive manufacturing
原文传递
Tip-and Laser-based 3D Nanofabrication in Extended Macroscopic Working Areas
3
作者 Ingo Ortlepp Thomas Frohlich +26 位作者 Roland FuBl Johann Reger Christoph Schaffel Stefan Sinzinger Steffen Strehle ReneTheska Lena Zentner Jens-Peter Zollner Ivo WRangelow Carsten Reinhardt Tino Hausotte Xinrui Cao Oliver Dannberg Florian Fern David Fischer Stephan Gorges Martin Hofmann Johannes Kirchner Andreas Meister Taras Sasiuk Ralf Schienbein Shraddha Supreeti Laura Mohr-Weidenfeller Christoph Weise Christoph Reuter Jaqueline Stauffenberg Eberhard Manske 《Nanomanufacturing and Metrology》 2021年第3期132-148,共17页
The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventiona... The field of optical lithography is subject to intense research and has gained enormous improvement.However,the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies.This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable:custom design and solutions for specific applications will dominate future development(Fritze in:Panning EM,Liddle JA(eds)Novel patterning technologies.International society for optics and photonics.SPIE,Bellingham,2021.https://doi.org/10.1117/12.2593229).For this reason,new aspects arise for future lithography,which is why enormous effort has been directed to the development of alternative fabrication technologies.Yet,the technologies emerging from this process,which are promising for coping with the current resolution and accuracy challenges,are only demonstrated as a proof-of-concept on a lab scale of several square micrometers.Such scale is not adequate for the requirements of modern lithography;therefore,there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies.Similar challenges arise because of the technical progress in various other fields,realizing new and unique functionalities based on nanoscale effects,e.g.,in nanophotonics,quantum computing,energy harvesting,and life sciences.Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks,which are available at the Technische Universitiit Ilmenau in the form of nanopositioning and nanomeasuring(NPM)machines.With this equipment,the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters. 展开更多
关键词 Nanomeasuring NANOPOSITIONING NANOMANUFACTURING Scale-spanning Tip-based laser-based Nanofabrication
原文传递
3D biofabrication of vascular networks for tissue regeneration:A report on recent advances 被引量:2
4
作者 M.D.Sarker Saman Naghieh +1 位作者 N.K.Sharma Xiongbiao Chen 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2018年第5期277-296,共20页
Rapid progress in tissue engineering research in past decades has opened up vast possibilities to tackle the challenges of generating tissues or organs that mimic native structures. The success of tissue engineered co... Rapid progress in tissue engineering research in past decades has opened up vast possibilities to tackle the challenges of generating tissues or organs that mimic native structures. The success of tissue engineered constructs largely depends on the incorporation of a stable vascular network that eventually anastomoses with the host vasculature to support the various biological functions of embedded cells. In recent years, significant progress has been achieved with respect to extrusion, laser, micro-molding, and electrospinning-based techniques that allow the fabrication of any geometry in a layer-by-layer fashion. Moreover, decellularized matrix, self-assembled structures, and cell sheets have been explored to replace the biopolymers needed for scaffold fabrication. While the techniques have evolved to create specific tissues or organs with outstanding geometric precision, formation of interconnected, functional, and perfused vascular networks remains a challenge. This article briefly reviews recent progress in 3D fabrication approaches used to fabricate vascular networks with incorporated cells, angiogenic factors, proteins, and/or peptides. The influence of the fabricated network on blood vessel formation, and the various features, merits, and shortcomings of the various fabrication techniques are discussed and summarized. 展开更多
关键词 3D bioprinting Tissue engineering VASCULARIZATION EXTRUSION laser-based printing Co-axial printing
下载PDF
Characterization of the Crystal Structure of Sesame Seed Cake Burned by Nd: YAG Laser
5
作者 Muna A. Pn Gawbah Abdelrahman A. Elbadawi +2 位作者 Yousef A. Alsabah Mohammed U. Orsod Ali A. S. Marouf 《Journal of Materials Science and Chemical Engineering》 2018年第4期121-131,共11页
This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process an... This paper reports obtaining of useful and high-value materials from sesame seed cake (SSC). For this purpose, SSC sample was burned for 30 s using Nd: YAG laser with output power 60 W. The products of this process and non-burned SSC were characterized by X-ray diffractometer (XRD), energy dispersive x-ray (EDX) and Fourier transform infrared (FTIR) so as to investigate its crystal structure and chemical components. XRD results of the SSC before burning process showed amorphous silica, rhombohedral phase of carbon, monoclinic phase of aluminum chloride, the hexagonal phase of moissanite-4H, (yellow, black) and hexagonal phase of graphite-2H, C (black). While the results of the burned SSC sample showed that the burning process using the power of Nd: YAG laser cased in appearing of crystalline hexagonal phase for silica and Carbon Nitride and converting the rhombohedral phase of Carbon into hexagonal phase. FTIR showed a number of absorbance peaks assigned to silica. 展开更多
关键词 Crystal Structure FTIR HEXAGONAL Carbon laser-based Combustion SESAME SEED CAKE SESAME Oil CAKE SILICA XRD
下载PDF
Review of materials used in laser-aided additive manufacturing processes to produce metallic products 被引量:5
6
作者 Xiaodong NIU Surinder SINGH +4 位作者 Akhil GARG Harpreet SINGH Biranchi PANDA Xiongbin PENG Qiujuan ZHANG 《Frontiers of Mechanical Engineering》 SCIE CSCD 2019年第3期282-298,共17页
Rapid prototyping (RP) or layered manufacturing (LM) technologies have been extensively used to manufacture prototypes composed mainly of plastics, polymers, paper, and wax due to the short product development time an... Rapid prototyping (RP) or layered manufacturing (LM) technologies have been extensively used to manufacture prototypes composed mainly of plastics, polymers, paper, and wax due to the short product development time and low costs of these technologies. However, such technologies, with the exception of selective laser melting and sintering, are not used to fabricate metallic products because of the resulting poor life, short cycle, poor surface finish, and low structural integrity of the fabricated parts. The properties endowed by these parts do not match those of functional parts. Therefore, extensive research has been conducted to develop new additive manufacturing (AM) technologies by extending existing RP technologies. Several AM technologies have been developed for the fabrication of metallic objects. These technologies utilize materials, such as Ni-, A1-, and Ti-based alloys and stainless steel powders, to fabricate high-quality functional components. The present work reviews the type of materials used in laserbased AM processes for the manufacture of metallic products. The advantages and disadvantages of processes and different materials are summarized, and future research directions are discussed in the final section. This review can help experts select the ideal type of process or technology for the manufacturing of elements composed of a given alloy or material (Ni, Ti, Al, Pb, and stainless steel). 展开更多
关键词 direct metal DEPOSITION laser-based MANUFACTURING rapid MANUFACTURING selective LASER meltiiTg ADDITIVE MANUFACTURING
原文传递
Modeling plants with sensor data 被引量:3
7
作者 MA Wei XIANG Bo +2 位作者 ZHA HongBin LIU Jia ZHANG XiaoPeng 《Science in China(Series F)》 2009年第3期500-511,共12页
Sensor data, typically images and laser data, are essential to modeling real plants. However, due to the complex geometry of the plants, the measurement data are generally limited, thereby bringing great difficulties ... Sensor data, typically images and laser data, are essential to modeling real plants. However, due to the complex geometry of the plants, the measurement data are generally limited, thereby bringing great difficulties in classifying and constructing plant organs, comprising leaves and branches. The paper presents an approach to modeling plants with the sensor data by detecting reliable sharp features, i.e. the leaf apexes of the plants with leaves and the branch tips of the plants without leaves, on volumes recovered from the raw data. The extracted features provide good estimations of correct positions of the organs. Thereafter, the leaves are reconstructed separately by simply fitting and optimizing a generic leaf model. One advantage of the method is that it involves limited manual intervention. For plants without leaves, we develop an efficient strategy for decomposition-based skeletonization by using the tip features to reconstruct the 3D models from noisy laser data. Experiments show that the sharp feature detection algorithm is effective, and the proposed plant modeling approach is competent in constructing realistic models with sensor data. 展开更多
关键词 plant modeling image-based modeling laser-based modeling sharp feature detection DECOMPOSITION SKELETONIZATION
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部