Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophi...Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophilic substrates.Here,we designed and developed simple,low-cost,and hydrophilic sweat UA detection sensors constructed by carbon electrodes and cellulose paper substrates.The carbon electrodes were made by carbonized polyimide films through a simple,one-step laser engraving method.Our electrodes are porous,possess a large specific surface area,and are flexible and conductive.The substrates were composed of highly hydrophilic cellulose paper that can effectively collect,store,and transport sweat.The constructed electrodes demonstrate high sensitivity of 0.4μA Lμmol^(-1)cm^(-2),wide linear range of 2–100μmol/L.In addition,our electrodes demonstrate high selectivity,excellent reproducibility,high flexibility,and outstanding stability against mechanical bending,temperature variations,and extended storage periods.Furthermore,our sensors have been proven to provide reliable results when detecting UA levels in real sweat and on real human skin.We envision that these sensors hold enormous potential for use in the prognosis,diagnosis,and treatment of gout.展开更多
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ...Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.展开更多
基金funded by Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011388)Guangzhou City Industrial Science&Technology Projects(No.202201010059)+2 种基金the fund from Guangxi China Tobacco Industry Co.,Ltd.(No.2022450000340057)the fund for the construction of Bengbu-SCUT Research Center for Advanced Manufacturing of Biomaterials(No.20210190)The National Key Research and Development Program of China(No.2018YFC1902102)。
文摘Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophilic substrates.Here,we designed and developed simple,low-cost,and hydrophilic sweat UA detection sensors constructed by carbon electrodes and cellulose paper substrates.The carbon electrodes were made by carbonized polyimide films through a simple,one-step laser engraving method.Our electrodes are porous,possess a large specific surface area,and are flexible and conductive.The substrates were composed of highly hydrophilic cellulose paper that can effectively collect,store,and transport sweat.The constructed electrodes demonstrate high sensitivity of 0.4μA Lμmol^(-1)cm^(-2),wide linear range of 2–100μmol/L.In addition,our electrodes demonstrate high selectivity,excellent reproducibility,high flexibility,and outstanding stability against mechanical bending,temperature variations,and extended storage periods.Furthermore,our sensors have been proven to provide reliable results when detecting UA levels in real sweat and on real human skin.We envision that these sensors hold enormous potential for use in the prognosis,diagnosis,and treatment of gout.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52104125, U1765204 and 51739008)
文摘Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.