期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Simple-structured hydrophilic sensors for sweat uric acid detection with laser-engraved polyimide electrodes and cellulose paper substrates
1
作者 Linhe Xu Xueshan Hu +8 位作者 Shuang Zhou Ze Zhang Junxian Zhang Chao Li Daxian Zuo Hao Liu Gang Chen Jiayu Wan Jinsong Tao 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第3期443-448,共6页
Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophi... Accurate detection of uric acid(UA)is crucial for diagnosing gout,yet traditional sweat-based UA sensors continue to face challenges posed by complex and costly electrode fabrication methods,as well as weakly hydrophilic substrates.Here,we designed and developed simple,low-cost,and hydrophilic sweat UA detection sensors constructed by carbon electrodes and cellulose paper substrates.The carbon electrodes were made by carbonized polyimide films through a simple,one-step laser engraving method.Our electrodes are porous,possess a large specific surface area,and are flexible and conductive.The substrates were composed of highly hydrophilic cellulose paper that can effectively collect,store,and transport sweat.The constructed electrodes demonstrate high sensitivity of 0.4μA Lμmol^(-1)cm^(-2),wide linear range of 2–100μmol/L.In addition,our electrodes demonstrate high selectivity,excellent reproducibility,high flexibility,and outstanding stability against mechanical bending,temperature variations,and extended storage periods.Furthermore,our sensors have been proven to provide reliable results when detecting UA levels in real sweat and on real human skin.We envision that these sensors hold enormous potential for use in the prognosis,diagnosis,and treatment of gout. 展开更多
关键词 laser-engraved carbon POLYIMIDE Cellulose paper HYDROPHILICITY Sweat uric acid
原文传递
Fracture of two three-dimensional parallel internal cracks in brittle solid under ultrasonic fracturing 被引量:7
2
作者 Haijun Wang Hanzhang Li +3 位作者 Lei Tang Xuhua Ren Qingxiang Meng Chun Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期757-769,共13页
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ... Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF. 展开更多
关键词 Three-dimensional internal laser-engraved crack(3D-ILC) Interaction of cracks Ultrasonic fatigue Penny-shaped crack Fracture mechanics High-cycle fatigue
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部