Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-ind...Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.展开更多
Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can a...Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.展开更多
Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superp...Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data.展开更多
The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is stil...The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.展开更多
As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly...As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly and accurately is a significant, popular and meaningful task.Classification methods based on laser-induced breakdown spectroscopy(LIBS) have been reported in recent years. Although LIBS is an advanced detection technology, it is necessary to combine it with some algorithm to reach the goal of rapid and accurate classification. As an important machine learning method, the random forest(RF) algorithm plays a great role in pattern recognition and material classification. This paper introduces a rapid classification method of Al alloy based on LIBS and the RF algorithm. The results show that the best accuracy that can be reached using this method to classify Al alloy samples is 98.59%, the average of which is 98.45%. It also reveals through the relationship laws that the accuracy varies with the number of trees in the RF and the size of the training sample set in the RF. According to the laws, researchers can find out the optimized parameters in the RF algorithm in order to achieve,as expected, a good result. These results prove that LIBS with the RF algorithm can exactly classify Al alloy effectively, precisely and rapidly with high accuracy, which obviously has significant practical value.展开更多
Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is...Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.展开更多
Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in therm...Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.展开更多
The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe^3+ water solution by a Ti: sapphi...The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe^3+ water solution by a Ti: sapphire laser radiation with pulse duration 〈45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection.展开更多
A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors,...A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.展开更多
Laser-induced breakdown spectroscopy (LIBS) has attracted many academic and industrial interests world-wide due to its unique advantages, such as little or no sample preparation requirement, in-situ/online and multi...Laser-induced breakdown spectroscopy (LIBS) has attracted many academic and industrial interests world-wide due to its unique advantages, such as little or no sample preparation requirement, in-situ/online and multi-elemental analysis, and remote sensing etc., and it has been regarded as a "future super star" for chemical analysis for many years . In China,展开更多
Laser-induced breakdown spectroscopy(LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis.In this work,a method for intensity-ratiobased LIBS classification of stainless ste...Laser-induced breakdown spectroscopy(LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis.In this work,a method for intensity-ratiobased LIBS classification of stainless steel applicable to highly fluctuating LIBS signal conditions is proposed.The spectral line pairs for intensity ratio calculation are selected according to elemental concentration and upper levels of emission lines.It is demonstrated that the classification accuracy can be significantly improved from that of full-spectra principal component analysis or intensity-based analysis.The proposed method is considered to be suited to an industrial scrap sorting system that requires minimal maintenance and low system price.展开更多
Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a l...Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the 'drift' obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants.展开更多
Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the anal...Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the analysis speed and accuracy, two calibration models are built with the support vector machine method: one considering the whole spectra and the other based on the segmental spectra input. Considering the results of the multiple linear regression analysis, three segmental spectra are chosen as the input variables of the support vector regression (SVR) model. Compared with the results of the SVR model with the whole spectra input, the relative standard error of prediction is reduced from 3.18% to 2.61% and the running time is saved due to the decrease in the number of input variables, showing the robustness in rapid soil analysis without the concentration gradient samples.展开更多
In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark opt...In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark optical emission spectrometry (Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS) in the bulk and defect analyses. The comparison of the bulk analyses shows that the chemical contents of C, Si, Mn, P, S and Cr obtained from LIBS agree well with those determined using Spark-OES. The LIBS is slightly less precise than Spark-OES. Defects were characterized in the two-dimensional distribution analysis mode for Al, Mg, Ca, Si and other elements. Both the LIBS and SEM/EDS results show the enrichment of Al, Mg, Ca and Si at the defect position and the two methods agree well with each other. SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant. However, LIBS can provide this information, meaning that the sensitivity of LIBS is higher than that of SEM/EDS. LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.展开更多
According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy(LIBS) has shown a great potential for rapid analysis in steel industry.Nevertheless, the accuracy and precision ma...According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy(LIBS) has shown a great potential for rapid analysis in steel industry.Nevertheless, the accuracy and precision may be limited by complex matrix effect and selfabsorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine(GA-KELM) is proposed for quantitative analysis of multiple elements(Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples.First, the standardized peak intensities of selected spectra lines are used as the input of model.Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor(R^2), Root-meansquare Errors of Calibration(RMSEC), Root-mean-square Errors of Prediction(RMSEP) of GAKELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.展开更多
One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated ...One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated a combination of time-resolved LIBS and convolutional neural networks(CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R_c^2?=?0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network(ANN), showing R_v^2?=?0.6318 and the root mean square error of validation(RMSEV)?=?0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R_v^2?=?0.7366 and RMSEV?=?0.7855.These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K.However, due to limited calibration samples, the two-dimensional models presented over-fitting.The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R_v^2?=?0.9968 and RMSEV?=?0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil.展开更多
pH is one of the significant properties of soil,and is closely related to the decomposition of soil organic matter,anion-cation balance,growth of plants and many other soil processes.In the present work,laser-induced ...pH is one of the significant properties of soil,and is closely related to the decomposition of soil organic matter,anion-cation balance,growth of plants and many other soil processes.In the present work,laser-induced breakdown spectroscopy(LIBS) technique coupled with random forest(RF) was proposed to quantify the pH of soil.First,LIBS spectra of soil was collected,and some common elements in soil were identified based on the National Institute of Science and Technology database.Then,in order to obtain a better predictive result,the influence of different input variables(full spectrum,different spectral ranges,the intensity of characteristic bands and characteristic lines) on the predictive performance of RF calibration model was explored with the evaluation indicators of root mean square error(RMSE) and coefficient of determination(R2),the characteristic bands of four elements(AI,Ca,Mg and Si) were determined as the optimal input variables.Finally,the predictive performance of RF calibration model was compared with partial least squares calibration model with the optimal input variables and model parameters,and RF calibration model showed a better predictive performance,and the four evaluation indicators of R_p^2,RMSEP,mean absolute error and mean relative error were 0.9687,0.1285,0.1114 and 0.0136,respectively.It indicates that LIBS technique coupled with RF algorithm is an effective method for pH determination of soil.展开更多
In this paper,we explore whether a feature selection method can improve model performance by using some classical machine learning models,artificial neural network,k-nearest neighbor,partial least squares-discriminati...In this paper,we explore whether a feature selection method can improve model performance by using some classical machine learning models,artificial neural network,k-nearest neighbor,partial least squares-discrimination analysis,random forest,and support vector machine(SVM),combined with the feature selection methods,distance correlation coefficient(DCC),important weight of linear discriminant analysis(IW-LDA),and Relief-F algorithms,to discriminate eight species of wood(African rosewood,Brazilian bubinga,elm,larch,Myanmar padauk,Pterocarpus erinaceus,poplar,and sycamore)based on the laser-induced breakdown spectroscopy(LIBS)technique.The spectral data are normalized by the maximum of line intensity and principal component analysis is applied to the exploratory data analysis.The feature spectral lines are selected out based on the important weight assessed by DCC,IW-LDA,and Relief-F.All models are built by using the different number of feature lines(sorted by their important weight)as input.The relationship between the number of feature lines and the correct classification rate(CCR)of the model is analyzed.The CCRs of all models are improved by using a suitable feature selection.The highest CCR achieves(98.55...0.39)%when the SVM model is established from 86 feature lines selected by the IW-LDA method.The result demonstrates that a suitable feature selection method can improve model recognition ability and reduce modeling time in the application of wood materials classification using LIBS.展开更多
The polarization-resolved laser-induced breakdown spectroscopy (PRLIBS) technique, which can significantly reduce the polarized emission from laser plasma by placing a polarizer in front of the detector, is a powerf...The polarization-resolved laser-induced breakdown spectroscopy (PRLIBS) technique, which can significantly reduce the polarized emission from laser plasma by placing a polarizer in front of the detector, is a powerful tool to improve the line-to-continuum ratio in LIBS applications. It is shown that the continuum emission from the plasma produced through ablating an Al sample by nanosecond laser pulses is much more polarized than the discrete line emission with the singlepulse PRLIBS technique. The effects of laser fluence and detection angle on the Al polarization spectrum are systematically explored experimentally. The calculated result of the polarization spectrum as a function of laser fluence shows that it is in agreement with the experimental observations.展开更多
Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quant...Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.展开更多
基金financially supported by the National Key R&D Program Projects of China (No.2021YFB3202402)National Natural Science Foundation of China (No.62173321)。
文摘Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy(LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350℃, 1400℃, and 1450℃. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350℃, 1400℃, and 1450℃.The normalized full spectrum combined with partial least squares(PLS) quantification modeling was used, using the Ca Ⅱ 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450℃ has been found to yield superior results compared to both 1350℃ and 1400℃, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.
基金financial supports from National Natural Science Foundation of China(No.62205172)Huaneng Group Science and Technology Research Project(No.HNKJ22-H105)Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality。
文摘Laser-induced breakdown spectroscopy(LIBS)has become a widely used atomic spectroscopic technique for rapid coal analysis.However,the vast amount of spectral information in LIBS contains signal uncertainty,which can affect its quantification performance.In this work,we propose a hybrid variable selection method to improve the performance of LIBS quantification.Important variables are first identified using Pearson's correlation coefficient,mutual information,least absolute shrinkage and selection operator(LASSO)and random forest,and then filtered and combined with empirical variables related to fingerprint elements of coal ash content.Subsequently,these variables are fed into a partial least squares regression(PLSR).Additionally,in some models,certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance.The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method.It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method.The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction(RMSEP)values of 1.605,3.478 and 1.647,respectively,which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables,which are 1.959,3.718 and 2.181,respectively.The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection,with RMSEP values dropping from 1.635,3.962 and 1.647 to 1.483,3.086 and 1.567,respectively.Such results demonstrate that using empirical knowledge as a support for datadriven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
基金financial support from the Scientific Research Program for Young Talents of China National Nuclear Corporation(2020)National Natural Science Foundation of China(Nos.51906124 and 62205172)+1 种基金Shanxi Province Science and Technology Department(No.20201101013)Guoneng Bengbu Power Generation Co.,Ltd(No.20212000001)。
文摘Severe matrix effects and high signal uncertainty are two key bottlenecks for the quantitative performance and wide applications of laser-induced breakdown spectroscopy(LIBS).Based on the understanding that the superposition of both matrix effects and signal uncertainty directly affects plasma parameters and further influences spectral intensity and LIBS quantification performance,a data selection method based on plasma temperature matching(DSPTM)was proposed to reduce both matrix effects and signal uncertainty.By selecting spectra with smaller plasma temperature differences for all samples,the proposed method was able to build up the quantification model to rely more on spectra with smaller matrix effects and signal uncertainty,therefore improving final quantification performance.When applied to quantitative analysis of the zinc content in brass alloys,it was found that both accuracy and precision were improved using either a univariate model or multiple linear regression(MLR).More specifically,for the univariate model,the root-mean-square error of prediction(RMSEP),the determination coefficients(R^(2))and relative standard derivation(RSD)were improved from 3.30%,0.864 and 18.8%to 1.06%,0.986 and 13.5%,respectively;while for MLR,RMSEP,R^(2)and RSD were improved from 3.22%,0.871 and 26.2%to 1.07%,0.986 and 17.4%,respectively.These results prove that DSPTM can be used as an effective method to reduce matrix effects and improve repeatability by selecting reliable data.
基金supported by the National Key Research and Development Program of China(No.2019YFD0901701)National Natural Science Foundation of China(Nos.12174359and 61975190)Provincial Key Research and Development Program of Shandong,China(No.2019GHZ010)。
文摘The quantitative determination of heavy metals in aquatic products is of great importance for food security issues.Laser-induced breakdown spectroscopy(LIBS)has been used in a variety of foodstuff analysis,but is still limited by its low sensitivity when targeting trace heavy metals.In this work,we compare three sample enrichment methods,namely drying,carbonization,and ashing,for increasing detection sensitivity by LIBS analysis for Pb and Cr in oyster samples.The results demonstrate that carbonization can remove a significant amount of the contributions of organic elements C,H,N and O;meanwhile,the signals of the metallic elements such as Cu,Pb,Sr,Ca,Cr and Mg are enhanced by3–6 times after carbonization,and further enhanced by 5–9 times after ashing.Such enhancement is not only due to the more concentrated metallic elements in the sample compared to the dried ones,but also the unifying of the matter in carbonized and ashed samples from which higher plasma temperature and electron density are observed.This condition favors the detection of trace elements.According to the calibration curves with univariate and multivariate analysis,the ashing method is considered to be the best choice.The limits of detection of the ashing method are 0.52 mg kg-1 for Pb and0.08 mg kg-1 for Cr,which can detect the presence of heavy metals in the oysters exceeding the maximum limits of Pb and Cr required by the Chinese national standard.This method provides a promising application for the heavy metal contamination monitoring in the aquatic product industry.
基金supported by National High Technology Research and Development Program of China (863 Program. No. 2013AA102402)
文摘As an important non-ferrous metal structural material most used in industry and production,aluminum(Al) alloy shows its great value in the national economy and industrial manufacturing.How to classify Al alloy rapidly and accurately is a significant, popular and meaningful task.Classification methods based on laser-induced breakdown spectroscopy(LIBS) have been reported in recent years. Although LIBS is an advanced detection technology, it is necessary to combine it with some algorithm to reach the goal of rapid and accurate classification. As an important machine learning method, the random forest(RF) algorithm plays a great role in pattern recognition and material classification. This paper introduces a rapid classification method of Al alloy based on LIBS and the RF algorithm. The results show that the best accuracy that can be reached using this method to classify Al alloy samples is 98.59%, the average of which is 98.45%. It also reveals through the relationship laws that the accuracy varies with the number of trees in the RF and the size of the training sample set in the RF. According to the laws, researchers can find out the optimized parameters in the RF algorithm in order to achieve,as expected, a good result. These results prove that LIBS with the RF algorithm can exactly classify Al alloy effectively, precisely and rapidly with high accuracy, which obviously has significant practical value.
基金Project supported by the National Natural Science Foundation of China(Grant No.11075184)the Knowledge Innovation Program of the Chinese Academy of Sciences(CAS)(Grant No.Y03RC21124)the CAS President’s International Fellowship Initiative Foundation(Grant No.2015VMA007)
文摘Laser-induced breakdown spectroscopy(LIBS) is a versatile tool for both qualitative and quantitative analysis.In this paper,LIBS combined with principal component analysis(PCA) and support vector machine(SVM) is applied to rock analysis.Fourteen emission lines including Fe,Mg,Ca,Al,Si,and Ti are selected as analysis lines.A good accuracy(91.38% for the real rock) is achieved by using SVM to analyze the spectroscopic peak area data which are processed by PCA.It can not only reduce the noise and dimensionality which contributes to improving the efficiency of the program,but also solve the problem of linear inseparability by combining PCA and SVM.By this method,the ability of LIBS to classify rock is validated.
基金supported by National Energy R&D Center of Petroleum Refining Technology of China(RIPP,SINOPEC)National Key Research and Development Program of China(No.2017YFA0304203)+5 种基金Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China(No.IRT_17R70)National Natural Science Foundation of China(Nos.61975103,61875108,61775125 and 11434007)Industrial Application Innovation Project(No.627010407)Scientific and Technological Innovation Project of Shanxi Gemeng US-China Clean Energy R&D Center Co.,Ltd111 Project(D18001)Fund for Shanxi‘1331KSC’。
文摘Although laser-induced breakdown spectroscopy(LIBS),as a fast on-line analysis technology,has great potential and competitiveness in the analysis of chemical composition and proximate analysis results of coal in thermal power plants,the measurement repeatability of LIBS needs to be further improved due to the difficulty in controlling the stability of the generated plasmas at present.In this paper,we propose a novel x-ray fluorescence(XRF) assisted LIBS method for high repeatability analysis of coal quality,which not only inherits the ability of LIBS to directly analyze organic elements such as C and H in coal,but also uses XRF to make up for the lack of stability of LIBS in determining other inorganic ash-forming elements.With the combination of elemental lines in LIBS and XRF spectra,the principal component analysis and the partial least squares are used to establish the prediction model and perform multi-elemental and proximate analysis of coal.Quantitative analysis results show that the relative standard deviation(RSD) of C is 0.15%,the RSDs of other elements are less than 4%,and the standard deviations of calorific value,ash content,sulfur content and volatile matter are 0.11 MJ kg,0.17%,0.79% and 0.41%respectively,indicating that the method has good repeatability in determination of coal quality.This work is helpful to accelerate the development of LIBS in the field of rapid measurement of coal entering the power plant and on-line monitoring of coal entering the furnace.
基金supported by the Russian Science Foundation(agreement#14-50-00034)(measurements of limit of detection)Russian Foundation for Basic Research(NK 15-32-20878/15)obtained in the frame of "Organization of Scientific Research"in the Far Eastern Federal University supported by Ministry of Education and Science of Russian Federation
文摘The influence of the energy of femtosecond laser pulses on the intensity of Fe I (371.99 nm) emission line and the continuous spectrum of the plasma generated on the surface of Fe^3+ water solution by a Ti: sapphire laser radiation with pulse duration 〈45 fs and energies up to 7 mJ is determined. A calibration curve was obtained for Fe3+ concentration range from 0.5 g/L to the limit of detection in water solution, and its saturation was detected for concentrations above 0.25 g/L, which is ascribed to self-absorption. The 3σ- limit of detection obtained for Fe in water solution is 2.6 mg/L in the case of 7 mJ laser pulse energy. It is found that an increase of laser pulse energy insignificantly affects on LOD in the time-resolved LIBS and leads to a slight improvement of the limit of detection.
基金supported by the Development Fund of National Autonomous Demonstration Innovation Zone of Shandong Peninsula(Grant No.ZCQ17104)the National Key Research and Development Program of China(Grant No.2017YFB0305400)‘double hundred plan’ Yantai talent funding project
文摘A diode-pumped solid-state laser (DPSSL) with a high energetic stability and long service life is applied to ablate the steel samples instead of traditional Nd:YAG laser pumped by a xenon lamp, and several factors, such as laser pulse energy, repetition rate and argon flow rate, that influence laser-induced breakdown spectroscopy (LIBS) analytical performance are investigated in detail. Under the optimal experiment conditions, the relative standard deviations for C, Si, Mn, Ni, Cr and Cu are 3.3%-8.9%, 0.9%-2.8%, 1.2%-4.1%, 1.7%-3.0%, 1.1%-3.4% and 2.5%-8.5%, respectively, with the corresponding relative errors of 1.1%-7.9%, 1.0%-6.3%, 0.4%-3.9%, 1.5%-6.3%, 1.2%-4.0% and 1.2%-6.4%. Compared with the results of the traditional spark discharge optical emission spectrometry technique, the analytical performance of LIBS is just a little inferior due to the less stable laser-induced plasma and smaller amount of ablated sample by the laser. However, the precision, detection limits and accuracy of LIBS obtained in our present work were sufficient to meet the requirements for process analysis. These technical performances of higher stability of output energy and longer service life for DPSSL, in comparison to the Q-switch laser pumped by xeon lamp, qualify it well for the real time online analysis for different industrial applications.
文摘Laser-induced breakdown spectroscopy (LIBS) has attracted many academic and industrial interests world-wide due to its unique advantages, such as little or no sample preparation requirement, in-situ/online and multi-elemental analysis, and remote sensing etc., and it has been regarded as a "future super star" for chemical analysis for many years . In China,
基金supported by the R&D Center for Valuable Recycling(Global-Top R&BD Program)of the Ministry of Environment.(Project No.2016002250003)partially supported by Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0008763,The Competency Development Program for Industry Specialist)。
文摘Laser-induced breakdown spectroscopy(LIBS) is a useful technique for accurate sorting of metal scrap by chemical composition analysis.In this work,a method for intensity-ratiobased LIBS classification of stainless steel applicable to highly fluctuating LIBS signal conditions is proposed.The spectral line pairs for intensity ratio calculation are selected according to elemental concentration and upper levels of emission lines.It is demonstrated that the classification accuracy can be significantly improved from that of full-spectra principal component analysis or intensity-based analysis.The proposed method is considered to be suited to an industrial scrap sorting system that requires minimal maintenance and low system price.
基金supported by National Natural Science Foundation of China(Nos.61127017,61378047,61205216,61178009,61108030,61475093,and 61275213)the National Key Technology R&D Program of China(No.2013BAC14B01)+2 种基金the 973 Program of China(No.2012CB921603)the Shanxi Natural Science Foundation,China(Nos.2013021004-1,2012021022-1)the Shanxi Scholarship Council of China(Nos.2013-011 and 2013-01)
文摘Determination of the chemical composition of cement and ratio values of clinker plays an important role in cement plants as part of the optimal process control and product quality evaluation. In the present paper, a laboratory laser-induced breakdown spectroscopy (LIBS) apparatus mainly comprising a sealed optical module and an analysis chamber has been designed for possible application in cement plants for on-site quality analysis of cement. Emphasis is placed on the structure and operation of the LIBS apparatus, the sealed optical path, the temperature controlled spectrometer, the sample holder, the proper calibration model established for minimizing the matrix effects, and a correction method proposed for overcoming the 'drift' obstacle. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The absolute measurement errors presented here for oxides analysis are within 0.5%, while those of ratio values are in the range of 0.02 to 0.05. According to the obtained results, this laboratory LIBS apparatus is capable of performing reliable and accurate, composition and proximate analysis of cement and is suitable for application in cement plants.
基金Supported by the National High-Technology Research and Development Program of China under Grant Nos 2014AA06A513 and 2013AA065502the National Natural Science Foundation of China under Grant No 61378041the Anhui Province Outstanding Youth Science Fund of China under Grant No 1508085JGD02
文摘Due to its complicated matrix effects, rapid quantitative analysis of chromium in agricultural soils is difficult without the concentration gradient samples by laser-induced breakdown spectroscopy. To improve the analysis speed and accuracy, two calibration models are built with the support vector machine method: one considering the whole spectra and the other based on the segmental spectra input. Considering the results of the multiple linear regression analysis, three segmental spectra are chosen as the input variables of the support vector regression (SVR) model. Compared with the results of the SVR model with the whole spectra input, the relative standard error of prediction is reduced from 3.18% to 2.61% and the running time is saved due to the decrease in the number of input variables, showing the robustness in rapid soil analysis without the concentration gradient samples.
基金supported by a Special Fund for Nationally Important Instruments of China(No.2012YQ20018208)
文摘In this paper, two types of comparison analyses, bulk analysis and defect analysis, were carried out for marine steel. The results of laser-induced breakdown spectroscopy (LIBS) were compared with those of spark optical emission spectrometry (Spark-OES) and scanning electron microscopy/energy dispersion spectroscopy (SEM/EDS) in the bulk and defect analyses. The comparison of the bulk analyses shows that the chemical contents of C, Si, Mn, P, S and Cr obtained from LIBS agree well with those determined using Spark-OES. The LIBS is slightly less precise than Spark-OES. Defects were characterized in the two-dimensional distribution analysis mode for Al, Mg, Ca, Si and other elements. Both the LIBS and SEM/EDS results show the enrichment of Al, Mg, Ca and Si at the defect position and the two methods agree well with each other. SEM/EDS cannot provide information about the difference in the chemical constituents when the differences between the defect position and the normal position are not significant. However, LIBS can provide this information, meaning that the sensitivity of LIBS is higher than that of SEM/EDS. LIBS can be used to rapidly characterize marine steel defects and provide guidance for improving metallurgical processes.
基金supported by National Natural Science Foundation of China (Grant No. 61571040)
文摘According to the multiple researches in the last couple of years, laser-induced breakdown spectroscopy(LIBS) has shown a great potential for rapid analysis in steel industry.Nevertheless, the accuracy and precision may be limited by complex matrix effect and selfabsorption effect of LIBS seriously. A novel multivariate calibration method based on genetic algorithm-kernel extreme learning machine(GA-KELM) is proposed for quantitative analysis of multiple elements(Si, Mn, Cr, Ni, V, Ti, Cu, Mo) in forty-seven certified steel and iron samples.First, the standardized peak intensities of selected spectra lines are used as the input of model.Then, the genetic algorithm is adopted to optimize the model parameters due to its obvious capability in finding the global optimum solution. Based on these two steps above, the kernel method is introduced to create kernel matrix which is used to replace the hidden layer's output matrix. Finally, the least square is applied to calculate the model's output weight. In order to verify the predictive capability of the GA-KELM model, the R-square factor(R^2), Root-meansquare Errors of Calibration(RMSEC), Root-mean-square Errors of Prediction(RMSEP) of GAKELM model are compared with the traditional PLS algorithm, respectively. The results confirm that GA-KELM can reduce the interference from matrix effect and self-absorption effect and is suitable for multi-elements calibration of LIBS.
基金supported by National Natural Science Foundation of China (Grant No. 61505253)National Key Research and Development Plan of China (Project No. 2016YFD0200601)
文摘One of the technical bottlenecks of traditional laser-induced breakdown spectroscopy(LIBS) is the difficulty in quantitative detection caused by the matrix effect. To troubleshoot this problem,this paper investigated a combination of time-resolved LIBS and convolutional neural networks(CNNs) to improve K determination in soil. The time-resolved LIBS contained the information of both wavelength and time dimension. The spectra of wavelength dimension showed the characteristic emission lines of elements, and those of time dimension presented the plasma decay trend. The one-dimensional data of LIBS intensity from the emission line at 766.49 nm were extracted and correlated with the K concentration, showing a poor correlation of R_c^2?=?0.0967, which is caused by the matrix effect of heterogeneous soil. For the wavelength dimension, the two-dimensional data of traditional integrated LIBS were extracted and analyzed by an artificial neural network(ANN), showing R_v^2?=?0.6318 and the root mean square error of validation(RMSEV)?=?0.6234. For the time dimension, the two-dimensional data of time-decay LIBS were extracted and analyzed by ANN, showing R_v^2?=?0.7366 and RMSEV?=?0.7855.These higher determination coefficients reveal that both the non-K emission lines of wavelength dimension and the spectral decay of time dimension could assist in quantitative detection of K.However, due to limited calibration samples, the two-dimensional models presented over-fitting.The three-dimensional data of time-resolved LIBS were analyzed by CNNs, which extracted and integrated the information of both the wavelength and time dimension, showing the R_v^2?=?0.9968 and RMSEV?=?0.0785. CNN analysis of time-resolved LIBS is capable of improving the determination of K in soil.
基金support of National Natural Science Foundation of China(Nos.21873076,21675123,21605123,21375105)Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JQ2013)Scientific Research Plan Projects of Shaanxi Education Department(No.17JK0780)。
文摘pH is one of the significant properties of soil,and is closely related to the decomposition of soil organic matter,anion-cation balance,growth of plants and many other soil processes.In the present work,laser-induced breakdown spectroscopy(LIBS) technique coupled with random forest(RF) was proposed to quantify the pH of soil.First,LIBS spectra of soil was collected,and some common elements in soil were identified based on the National Institute of Science and Technology database.Then,in order to obtain a better predictive result,the influence of different input variables(full spectrum,different spectral ranges,the intensity of characteristic bands and characteristic lines) on the predictive performance of RF calibration model was explored with the evaluation indicators of root mean square error(RMSE) and coefficient of determination(R2),the characteristic bands of four elements(AI,Ca,Mg and Si) were determined as the optimal input variables.Finally,the predictive performance of RF calibration model was compared with partial least squares calibration model with the optimal input variables and model parameters,and RF calibration model showed a better predictive performance,and the four evaluation indicators of R_p^2,RMSEP,mean absolute error and mean relative error were 0.9687,0.1285,0.1114 and 0.0136,respectively.It indicates that LIBS technique coupled with RF algorithm is an effective method for pH determination of soil.
基金support from National Natural Science Foundation of China(No.62075011)Graduate Technological Innovation Project of Beijing Institute of Technology(No.2019CX20026)。
文摘In this paper,we explore whether a feature selection method can improve model performance by using some classical machine learning models,artificial neural network,k-nearest neighbor,partial least squares-discrimination analysis,random forest,and support vector machine(SVM),combined with the feature selection methods,distance correlation coefficient(DCC),important weight of linear discriminant analysis(IW-LDA),and Relief-F algorithms,to discriminate eight species of wood(African rosewood,Brazilian bubinga,elm,larch,Myanmar padauk,Pterocarpus erinaceus,poplar,and sycamore)based on the laser-induced breakdown spectroscopy(LIBS)technique.The spectral data are normalized by the maximum of line intensity and principal component analysis is applied to the exploratory data analysis.The feature spectral lines are selected out based on the important weight assessed by DCC,IW-LDA,and Relief-F.All models are built by using the different number of feature lines(sorted by their important weight)as input.The relationship between the number of feature lines and the correct classification rate(CCR)of the model is analyzed.The CCRs of all models are improved by using a suitable feature selection.The highest CCR achieves(98.55...0.39)%when the SVM model is established from 86 feature lines selected by the IW-LDA method.The result demonstrates that a suitable feature selection method can improve model recognition ability and reduce modeling time in the application of wood materials classification using LIBS.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 60978014, 11074027, 61178022, 11274053, and 11211120156)the Fundsfrom Science and Technology Department of Jilin Province, China (Grant Nos. 20090523, 20100521, 20100168, and 20111812)Funds from Education Department of Jilin Province
文摘The polarization-resolved laser-induced breakdown spectroscopy (PRLIBS) technique, which can significantly reduce the polarized emission from laser plasma by placing a polarizer in front of the detector, is a powerful tool to improve the line-to-continuum ratio in LIBS applications. It is shown that the continuum emission from the plasma produced through ablating an Al sample by nanosecond laser pulses is much more polarized than the discrete line emission with the singlepulse PRLIBS technique. The effects of laser fluence and detection angle on the Al polarization spectrum are systematically explored experimentally. The calculated result of the polarization spectrum as a function of laser fluence shows that it is in agreement with the experimental observations.
基金supported by the 973 Program of China(No.2012CB921603)National Natural Science Foundation of China(Nos.61475093,61127017,61178009,61108030,61378047,61275213,61475093,and 61205216)+3 种基金the National Key Technology R&D Program of China(No.2013BAC14B01)the Shanxi Natural Science Foundation(Nos.2013021004-1 and 2012021022-1)the Shanxi Scholarship Council of China(Nos.2013-011 and 2013-01)the Program for the Outstanding Innovative Teams of Higher Learning Institutions of Shanxi,China
文摘Improvement of measurement precision and repeatability is one of the issues currently faced by the laser-induced breakdown spectroscopy (LIBS) technique, which is expected to be capable of precise and accurate quantitative analysis. It was found that there was great potential to improve the signal quality and repeatability by reducing the laser beam divergence angle using a suitable beam expander (BE). In the present work, the influences of several experimental parameters for the case with BE are studied in order to optimize the analytical performances: the signal to noise ratio (SNR) and the relative standard deviation (RSD). We demonstrate that by selecting the optimal experimental parameters, the BE-included LIBS setup can give higher SNR and lower RSD values of the line intensity normalized by the whole spectrum area. For validation purposes, support vector machine (SVM) regression combined with principal component analysis (PCA) was used to establish a calibration model to realize the quantitative analysis of the ash content. Good agreement has been found between the laboratory measurement results from the LIBS method and those from the traditional method. The measurement accuracy presented here for ash content analysis is estimated to be 0.31%, while the average relative error is 2.36%.