期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Ultrafast dynamics of femtosecond laser-induced high spatial frequency periodic structures on silicon surfaces
1
作者 Ruozhong Han Yuchan Zhang +6 位作者 Qilin Jiang Long Chen Kaiqiang Cao Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Science》 2024年第3期33-46,共14页
Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than t... Femtosecond laser-induced periodic surface structures(LIPSS)have been extensively studied over the past few decades.In particular,the period and groove width of high-spatial-frequency LIPSS(HSFL)is much smaller than the diffraction limit,making it a useful method for efficient nanomanufacturing.However,compared with the low-spatial-frequency LIPSS(LSFL),the structure size of the HSFL is smaller,and it is more easily submerged.Therefore,the formation mechanism of HSFL is complex and has always been a research hotspot in this field.In this study,regular LSFL with a period of 760 nm was fabricated in advance on a silicon surface with two-beam interference using an 800 nm,50 fs femtosecond laser.The ultrafast dynamics of HSFL formation on the silicon surface of prefabricated LSFL under single femtosecond laser pulse irradiation were observed and analyzed for the first time using collinear pump-probe imaging method.In general,the evolution of the surface structure undergoes five sequential stages:the LSFL begins to split,becomes uniform HSFL,degenerates into an irregular LSFL,undergoes secondary splitting into a weakly uniform HSFL,and evolves into an irregular LSFL or is submerged.The results indicate that the local enhancement of the submerged nanocavity,or the nanoplasma,in the prefabricated LSFL ridge led to the splitting of the LSFL,and the thermodynamic effect drove the homogenization of the splitting LSFL,which evolved into HSFL. 展开更多
关键词 laser-induced periodic surface structures(lipss) local field enhancement collinear pump-probe imaging silicon high spatial frequency periodic structures
下载PDF
Two-dimensional laser-induced periodic surface structures formed on crystalline silicon by GHz burst mode femtosecond laser pulses 被引量:2
2
作者 Shota Kawabata Shi Bai +2 位作者 Kotaro Obata Godai Miyaji Koji Sugioka 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第1期212-220,共9页
Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that canno... Femtosecond laser pulses with GHz burst mode that consist of a series of trains of ultrashort laser pulses with a pulse interval of several hundred picoseconds offer distinct features in material processing that cannot be obtained by the conventional irradiation scheme of femtosecond laser pulses(single-pulse mode).However,most studies using the GHz burst mode femtosecond laser pulses focus on ablation of materials to achieve high-efficiency and high-quality material removal.In this study,we explore the ability of the GHz burst mode femtosecond laser processing to form laser-induced periodic surface structures(LIPSS)on silicon.It is well known that the direction of LIPSS formed by the single-pulse mode with linearly polarized laser pulses is typically perpendicular to the laser polarization direction.In contrast,we find that the GHz burst mode femtosecond laser(wavelength:1030 nm,intra-pulse duration:220 fs,intra-pulse interval time(intra-pulse repetition rate):205 ps(4.88 GHz),burst pulse repetition rate:200 kHz)creates unique two-dimensional(2D)LIPSS.We regard the formation mechanism of 2D LIPSS as the synergetic contribution of the electromagnetic mechanism and the hydrodynamic mechanism.Specifically,generation of hot spots with highly enhanced electric fields by the localized surface plasmon resonance of subsequent pulses in the bursts within the nanogrooves of one-dimensional LIPSS formed by the preceding pulses creates 2D LIPSS.Additionally,hydrodynamic instability including convection flow determines the final structure of 2D LIPSS. 展开更多
关键词 GHz burst laser-induced periodic surface structures(lipss) surface nanostructuring 2D nanostructures
下载PDF
Laser-induced periodic surface structured electrodes with 45% energy saving in electrochemical fuel generation through field localization
3
作者 Chaudry Sajed Saraj Subhash C.Singh +3 位作者 Gopal Verma Rahul A Rajan Wei Li Chunlei Guo 《Opto-Electronic Advances》 SCIE EI CAS 2022年第11期29-44,共16页
Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals a... Electrochemical oxidation/reduction of radicals is a green and environmentally friendly approach to generating fuels.These reactions,however,suffer from sluggish kinetics due to a low local concentration of radicals around the electrocatalyst.A large applied electrode potential can enhance the fuel generation efficiency via enhancing the radical concentration around the electrocatalyst sites,but this comes at the cost of electricity.Here,we report about a~45%saving in energy to achieve an electrochemical hydrogen generation rate of 3×10^(16) molecules cm^(–2)s^(–1)(current density:10 mA/cm^(2))through localized electric field-induced enhancement in the reagent concentration(LEFIRC)at laser-induced periodic surface structured(LIPSS)electrodes.The finite element model is used to simulate the spatial distribution of the electric field to understand the effects of LIPSS geometric parameters in field localization.When the LIPSS patterned electrodes are used as substrates to support Pt/C and RuO_(2) electrocatalysts,the η_(10) overpotentials for HER and OER are decreased by 40.4 and 25%,respectively.Moreover,the capability of the LIPSS-patterned electrodes to operate at significantly reduced energy is also demonstrated in a range of electrolytes,including alkaline,acidic,neutral,and seawater.Importantly,when two LIPSS patterned electrodes were assembled as the anode and cathode into a cell,it requires 330 mVs of lower electric potential with enhanced stability over a similar cell made of pristine electrodes to drive a current density of 10 mA/cm^(2).This work demonstrates a physical and versatile approach of electrode surface patterning to boost electrocatalytic fuel generation performance and can be applied to any metal and semiconductor catalysts for a range of electrochemical reactions. 展开更多
关键词 electric field localization hotspot formation laser-induced periodic surface structures electrochemical fuel generation overall water splitting
下载PDF
Femtosecond laser-induced periodic surface structures on hard and brittle materials 被引量:1
4
作者 ZHAO GuoXu WANG Gong +6 位作者 LI YunFei WANG Lei LIAN YuDong YU Yu ZHAO Hui WANG YuLei LU ZhiWei 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第1期19-36,共18页
Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate... Hard and brittle materials have high hardness,excellent optical stability,chemical stability,and high thermal stability.Hence,they have huge application potential in various fields,such as optical components,substrate materials,and quantum information,especially under harsh conditions,such as high temperatures and high pressures.Femtosecond laser direct writing technology has greatly promoted the development of femtosecond laser-induced periodic surface structure(Fs-LIPSS or LIPSS by a femtosecond laser)applications of hard and brittle materials due to its high precision,controllability,and three-dimensional processing ability.Thus far,LIPSSs have been widely used in material surface treatment,optoelectronic devices,and micromechanics.However,a consensus has not been reached regarding the formation mechanism of LIPSSs on hard and brittle materials.In this paper,three widely accepted LIPSS formation mechanisms are introduced,and the characteristics and applications of LIPSSs on diamonds,silicon,silicon carbide,and fused silica surfaces in recent years are summarized.In addition,the application prospects and challenges of LIPSSs on hard and brittle materials by a femtosecond laser are discussed. 展开更多
关键词 laser-induced periodic surface structures hard and brittle materials femtosecond laser
原文传递
Large-area straight,regular periodic surface structures produced on fused silica by the interference of two femtosecond laser beams through cylindrical lens 被引量:9
5
作者 Long Chen Kaiqiang Cao +5 位作者 Yanli Li Jukun Liu Shian Zhang Donghai Feng Zhenrong Sun Tianqing Jia 《Opto-Electronic Advances》 SCIE EI 2021年第12期34-42,共9页
Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos... Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos. 展开更多
关键词 laser-induced periodic surface structures two-beam interference structural coloring fused silica cylindrical lens
下载PDF
Femtosecond laser-induced periodic structures:mechanisms, techniques, and applications 被引量:6
6
作者 Yuchan Zhang Qilin Jiang +8 位作者 Mingquan Long Ruozhong Han Kaiqiang Cao Shian Zhang Donghai Feng Tianqing Jia Zhenrong Sun Jianrong Qiu Hongxing Xu 《Opto-Electronic Science》 2022年第6期11-31,共21页
Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs hav... Over the past two decades,femtosecond laser-induced periodic structures(femtosecond-LIPSs)have become ubiquitous in a variety of materials,including metals,semiconductors,dielectrics,and polymers.Femtosecond-LIPSs have become a useful laser processing method,with broad prospects in adjusting material properties such as structural color,data storage,light absorption,and luminescence.This review discusses the formation mechanism of LIPSs,specifically the LIPS formation processes based on the pump-probe imaging method.The pulse shaping of a femtosecond laser in terms of the time/frequency,polarization,and spatial distribution is an efficient method for fabricating high-quality LIPSs.Various LIPS applications are also briefly introduced.The last part of this paper discusses the LIPS formation mechanism,as well as the high-efficiency and high-quality processing of LIPSs using shaped ultrafast lasers and their applications. 展开更多
关键词 laser-induced periodic structures(lipss) formation mechanisms femtosecond pulse shaping pump-probe imaging structural color birefringent effects optical absorption PHOTOLUMINESCENCE
下载PDF
Formation of Laser-Induced Periodic Surface Structures on Reaction-Bonded Silicon Carbide by Femtosecond Pulsed Laser Irradiation 被引量:4
7
作者 Tushar Meshram Jiwang Yan 《Nanomanufacturing and Metrology》 EI 2023年第1期36-48,共13页
Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,mak... Reaction-bonded silicon carbide(RB-SiC)is an excellent engineering material with high hardness,stiffness,and resistance to chemical wear.However,its widespread use is hindered due to the properties mentioned above,making it difficult to machine functional surface structures through mechanical and chemical methods.This study investigated the fundamental characteristics of laser-induced periodic surface structures(LIPSSs)on RB-SiC via femtosecond pulsed laser irradiation at a wavelength of 1028 nm.Low-spatial-frequency LIPSS(LSFL)and high-spatial-frequency LIPSS(HSFL)formed on the surface along directions perpendicular to the laser polarization.SiC grains surrounded by a large amount of Si show a reduced threshold for LIPSS formation.By varying laser fluence and scanning speed,HSFL-LSFL hybrid structures were generated on the SiC grains.Transmission electron microscopy observations and Raman spectroscopy were carried out to understand the formation mechanism of the hybrid LIPSS.A possible mechanism based on the generation of multiple surface electromagnetic waves due to the nonlinear response of SiC was proposed to explain the hybrid structure formation.Furthermore,the direction of laser scanning with respect to laser polarization affects the uniformity of the generated LIPSS. 展开更多
关键词 Reaction-bonded silicon carbide surface texturing laser-induced periodic surface structure Composite material Hybrid nanostructure
原文传递
Nanosecond laser-induced controllable periodical surface structures on silicon 被引量:4
8
作者 Lei Chen Zelin Liu +6 位作者 Chuan Guo Tongcheng Yu Minsun Chen Zhongjie Xu Hao Liu Guomin Zhao Kai Han 《Chinese Optics Letters》 SCIE EI CAS CSCD 2022年第1期186-191,共6页
In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency... In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency of 10 Hz.Laser-induced periodic surface structures(LIPSSs) are observed when the fluence is 121 mJ/cm;and the number of pulses is 1000.The threshold of fluence for generating LIPSS gradually increases with the decrease of the number of pulses.In addition,the laser incident angle has a notable effect on the period of LIPSS,which varies from 430 nm to 1578 nm,as the incident angle ranges from10° to 60° correspondingly.Besides,the reflectivity is reduced significantly on silicon with LIPSS. 展开更多
关键词 laser-induced periodic surface structure NANOstructures FLUENCE number of pulses incident angle
原文传递
Investigations on femtosecond laser-induced surface modification and periodic micropatterning with anti-friction properties on Ti6Al4V titanium alloy 被引量:3
9
作者 Xinlei PAN Weifeng HE +4 位作者 Zhenbing CAI Xuede WANG Ping LIU Sihai LUO Liucheng ZHOU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第4期521-537,共17页
Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a fem... Titanium alloys have a wide application in aerospace industries as it has greater strength and low density, but it has poor tribological properties. To improve its friction and wear performance, in present work, a femtosecond laser is used to directly irradiate the Ti6Al4V titanium alloy surface in air conditioning, which results in localized ablation and the formation of periodic microstructures but also a strong pressure wave, propagating the material inside. Through the optimization of processing parameters, surface modification and periodic micropatterning with effective anti-friction properties were successfully induced on the surface. After a treatment of femtosecond laser-induced surface modification(FsLSM), the surface microhardness was improved by 16.6% and compressive residual stress reached-746 MPa. Besides, laser-induced periodic surface structures(LIPSS) with a titanium oxide outer coating were fabricated uniformly on the titanium alloy surface. Rotary ball-on-disk wear experiments revealed that the average coefficient of friction(COF) and wear mass loss of the specimen with Fs LSM treatment were largely reduced by 68.9% and 90% as compared to that of untreated specimens, respectively. It was analyzed that the reason for the remarkable wear resistance was attributed to the comprehensive action of the generation of LIPSS, the titanium oxide outer coating, high amplitude compressive residual stress and gradient grain size distribution on the subsurface during the laser surface treatment. Since the findings here are broadly applicable to a wide spectrum of engineering metals and alloys, the present results offer unique pathways to enhancing the tribological performance of materials. 展开更多
关键词 Femtosecond laser-induced surface modification laser-induced periodic surface structures Microstructure Titanium alloys Tribological performance
原文传递
Impact of flm thickness in laser‑induced periodic structures on amorphous Si flms
10
作者 Liye Xu Jiao Geng +2 位作者 Liping Shi Weicheng Cui Min Qiu 《Frontiers of Optoelectronics》 EI CSCD 2023年第2期115-122,共8页
We report self-organized periodic nanostructures on amorphous silicon thin flms by femtosecond laser-induced oxidation.The dependence of structural periodicity on the thickness of silicon flms and the substrate materi... We report self-organized periodic nanostructures on amorphous silicon thin flms by femtosecond laser-induced oxidation.The dependence of structural periodicity on the thickness of silicon flms and the substrate materials is investigated.The results reveal that when silicon flm is 200 nm,the period of self-organized nanostructures is close to the laser wavelength and is insensitive to the substrates.In contrast,when the silicon flm is 50 nm,the period of nanostructures is much shorter than the laser wavelength,and is dependent on the substrates.Furthermore,we demonstrate that,for the thick silicon flms,quasi-cylindrical waves dominate the formation of periodic nanostructures,while for the thin silicon flms,the formation originates from slab waveguide modes.Finite-diference time-domain method-based numerical simulations support the experimental discoveries. 展开更多
关键词 laser-induced periodic surface structures(lipss) Ultrafast optoelectronics Laser nanofabrication Quasicylindrical waves
原文传递
Surface Micro-Nano Structures on GaN Thin Films Induced by 355 nm Nanosecond Laser Irradiation
11
作者 Gu Yonggang Niu Jian +2 位作者 Yang Jian Dong Fang Xu Hongxing 《激光与光电子学进展》 CSCD 北大核心 2023年第7期196-202,共7页
Gallium nitride(GaN)has widespread applications in the semiconductor industry because of its desirable optoelectronic properties.The fabrication of surface structures on GaN thin films can effectively modify their opt... Gallium nitride(GaN)has widespread applications in the semiconductor industry because of its desirable optoelectronic properties.The fabrication of surface structures on GaN thin films can effectively modify their optical and electrical properties,providing additional degrees of freedom for controlling GaN-based devices.Compared with lithography-based techniques,laser processing is maskless and much more efficient.This paper shows how surface micronano structures can be produced on GaN thin films using 355 nm nanosecond laser irradiation.The effects of the laser pulse energy,number of pulses,and polarization direction were studied.It was found that distinct micro-nano structures were formed under different irradiation conditions,and their geometries and elemental compositions were analyzed.The results indicate that different types of surface micro-nano structures can be produced on GaN thin films in a controllable manner using 355 nm nanosecond laser irradiation.The results of our study provide valuable guidance for the surface modification of GaN-based optoelectronic devices. 展开更多
关键词 gallium nitride thin films nanosecond laser micro-nano structures laser-induced periodic surface structures
原文传递
Periodic surface functional group density on graphene via laserinduced substrate patterning at Si/SiO2 interface 被引量:1
12
作者 Karolina A.Drogowska-Horna Inam Mirza +8 位作者 Alvaro Rodriguez Petr Kovaricek Juraj Sladek Thibault J.-Y.Derrien Mindaugas Gedvilas Gediminas Raciukaitis Otakar Frank Nadezhda M.Bulgakova Martin Kalbac 《Nano Research》 SCIE EI CAS CSCD 2020年第9期2332-2339,共8页
Controlling the spatial distribution of functional groups on two-dimensional(2D)materials on a micrometer scale and below represents a fascinating opportunity to achieve anisotropic(opto)electronic properties of these... Controlling the spatial distribution of functional groups on two-dimensional(2D)materials on a micrometer scale and below represents a fascinating opportunity to achieve anisotropic(opto)electronic properties of these materials.Periodic patterns of covalent functionalization can lead to pericxJic potentials in the monolayer;however,creating such superstructures is very challenging.Here,we describe an original approach to the periodic functionalization of graphene induced by substrate patterning using a pulsed laser.Laser-induced periodic surface structures(LIPSS)are produced on silicon wafers with thermally-grown oxide layers.The irradiation conditions for the formation of UPSS confined at the SiO2/Si interface have been unravelled.LIPSS imprint their periodicity to the reactivity of the monolayer graphene placed on the substrate via modulation of its local doping level.This method is clean,straightforward and scalable with high spatial resolution. 展开更多
关键词 two-dimensional(2D)materials graphene functionalization laser-induced periodic surface structures(lipss) periodic patterns Raman spectroscopy atomic force microscopy(AFM)
原文传递
扫描方向对金属和硅复合薄膜表面激光诱导自组织加工质量的影响(特邀) 被引量:1
13
作者 石理平 耿娇 仇旻 《光子学报》 EI CAS CSCD 北大核心 2023年第7期21-27,共7页
激光诱导周期性表面结构的质量可通过调整激光参数、改善材料表面和优化扫描策略等手段来提高。研究了扫描方向对线偏振激光诱导金属/硅复合薄膜表面氧化LIPSS的影响。结果表明,当扫描方向垂直于激光偏振方向时,纳米结构会出现分叉、不... 激光诱导周期性表面结构的质量可通过调整激光参数、改善材料表面和优化扫描策略等手段来提高。研究了扫描方向对线偏振激光诱导金属/硅复合薄膜表面氧化LIPSS的影响。结果表明,当扫描方向垂直于激光偏振方向时,纳米结构会出现分叉、不连续等问题;当扫描方向平行于激光偏振方向时,纳米结构呈现短程有序,但在光斑拼接处存在扭曲;而当扫描方向与激光偏振方向存在一定夹角时,容易获得长程均匀有序的周期性纳米结构。数值仿真结果表明造成这些现象的原因是近场效应对自组织过程具有不可忽略的影响。 展开更多
关键词 激光诱导周期性表面结构 表面等离激元 激光诱导化学反应 复合薄膜
下载PDF
激光诱导薄膜材料二维图案化纳米加工技术(特邀)
14
作者 黄佳旭 李峻 +1 位作者 邱佩 徐少林 《光子学报》 EI CAS CSCD 北大核心 2023年第7期13-20,共8页
激光诱导周期性表面结构(Laser-Induced Periodic Surface Structures,LIPSS)是一种在激光辐照下自发生成的超衍射极限结构,但其结构类型较为单一。提出了一种新型的二维图案化激光纳米加工方法,通过同时利用激光诱导的热效应及表面等... 激光诱导周期性表面结构(Laser-Induced Periodic Surface Structures,LIPSS)是一种在激光辐照下自发生成的超衍射极限结构,但其结构类型较为单一。提出了一种新型的二维图案化激光纳米加工方法,通过同时利用激光诱导的热效应及表面等离激元干涉,在正交的两个方向上分别形成褶皱和LIPSS两种周期性结构。这种方法仅通过单步辐照就能在薄膜材料表面生成二维褶皱LIPSS,从而丰富LIPSS的结构类型。同时,通过调整加工材料的膜厚或基底,以及改变入射激光波长或角度,可以分别调制二维纳米结构在两个正交方向上的周期。此外,通过激光偏振也可以调控该结构的取向。该方法能够进一步拓宽基于LIPSS的可加工表面纳米结构的种类及应用。 展开更多
关键词 超快激光 激光诱导周期性表面结构 激光诱导褶皱 薄膜材料 二维纳米结构 飞秒激光
下载PDF
用可见激光在聚(氨酯-酰亚胺)表面制备周期性亚微米结构
15
作者 李梅 路庆华 +3 位作者 隋郁 李刚 钱昱 王宗光 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2002年第10期1992-1995,共4页
由于含有偶氮苯染料侧基 ,聚 (氨酯 -酰亚胺 ) (PUI)对 5 3 2 nm的光具有较强的吸收 .采用该波长的可见偏振脉冲激光 (Nd∶ YAG激光器的倍频输出 ) ,在 PUI薄膜表面制备了激光诱导周期性表面微结构(LIPSS) .研究了染料引入方式以及染料... 由于含有偶氮苯染料侧基 ,聚 (氨酯 -酰亚胺 ) (PUI)对 5 3 2 nm的光具有较强的吸收 .采用该波长的可见偏振脉冲激光 (Nd∶ YAG激光器的倍频输出 ) ,在 PUI薄膜表面制备了激光诱导周期性表面微结构(LIPSS) .研究了染料引入方式以及染料侧基含量对微结构形成过程的影响 ,讨论了入射角、激光脉冲数、激光脉宽等激光辐射条件对 LIPSS形成过程以及对微结构形貌和周期性的影响 . 展开更多
关键词 周期性亚微米结构 激光诱导周期性表面微结构 聚(氨酯-酰亚胺) 可见激光
下载PDF
High period frequency LIPSS emerging on 304 stainless steel under the irradiation of femtosecond laser double-pulse trains 被引量:4
16
作者 Yifei Li Jie Hu +2 位作者 Wei Liu Jiangang Yin Jiangang Lu 《Chinese Optics Letters》 SCIE EI CAS CSCD 2021年第12期156-163,共8页
In this work,we used femtosecond laser double-pulse trains to produce laser-induced periodic surface structures(LIPSS)on 304 stainless steel.Surprisingly,a novel type of periodic structure was discovered,which,to the ... In this work,we used femtosecond laser double-pulse trains to produce laser-induced periodic surface structures(LIPSS)on 304 stainless steel.Surprisingly,a novel type of periodic structure was discovered,which,to the best of our knowledge,is the first in literature.We surmised that the cause for this novel LIPSS was related to the weak energy coupling of subpulses when the intrapulse delay was longer than the thermal relaxation time of stainless steel.Furthermore,we found that the fluence combination and arrival sequence of subpulses in a double-pulse train also influenced LIPSS morphology. 展开更多
关键词 femtosecond laser laser-induced periodic surface structures morphology stainless steel
原文传递
激光诱导聚合物表面周期性微结构的快速制备研究
17
作者 胡笑锦 李梅 李鑫 《实验室研究与探索》 CAS 2005年第9期11-14,共4页
采用波长355nm的紫外偏振激光,通过步进扫描法在聚酰亚胺(BDTA-MMAD)薄膜表面制备了激光诱导周期性表面微结构(LIPSS),采用原子力显微镜(AFM)分析了LIPSS图形质量及几何尺寸,考察了X、Y方向扫描速度和扫描步长等参数对LIPSS制备的影响,... 采用波长355nm的紫外偏振激光,通过步进扫描法在聚酰亚胺(BDTA-MMAD)薄膜表面制备了激光诱导周期性表面微结构(LIPSS),采用原子力显微镜(AFM)分析了LIPSS图形质量及几何尺寸,考察了X、Y方向扫描速度和扫描步长等参数对LIPSS制备的影响,发现随着X方向扫描速度和Y方向扫描步长的增大,由于薄膜表面受到激光辐射累积能量降低,LIPSS图形质量明显下降。但是,在提高Y方向扫描步长的同时提高激光辐射能量,仍能在较快速度下制得规则的LIPSS结构。根据实验结果提出了实现LIPSS快速制备的优化条件,并探讨了LIPSS的形成机理。 展开更多
关键词 激光诱导周期性表面微结构 原子力显微镜 步进扫描法
下载PDF
纳秒激光诱导聚酰亚胺薄膜周期性结构的产生 被引量:1
18
作者 林素颖 廖小杰 韩冰 《红外与激光工程》 EI CSCD 北大核心 2022年第2期94-100,共7页
采用波长为355 nm、脉宽为7 ns、重复频率为1 Hz的线性偏振激光在聚酰亚胺薄膜表面制备了微米量级的周期性表面结构,并讨论了激光参数对条纹形貌的影响。实验发现,周期性结构的产生存在一定的能量密度阈值和脉冲个数阈值,当激光能量密... 采用波长为355 nm、脉宽为7 ns、重复频率为1 Hz的线性偏振激光在聚酰亚胺薄膜表面制备了微米量级的周期性表面结构,并讨论了激光参数对条纹形貌的影响。实验发现,周期性结构的产生存在一定的能量密度阈值和脉冲个数阈值,当激光能量密度范围在54~586 mJ/cm^(2),脉冲个数在1~50时,能在聚合物薄膜表面产生周期为4~6.65μm的规整条纹结构。在保持激光能量密度不变的情况下,增加脉冲个数,或者保持脉冲个数不变,增大入射到材料表面的激光能量密度,都能引起条纹周期增大,并且根据实验结果,随着脉冲个数的增加,烧蚀坑的深度增加,LIPSS能持续出现在坑底。此外,为分析周期性结构形成的可能原因,通过对热传导模型的建立讨论了当周期性结构形成时材料历经的物理状态。文中的相关研究结果对基于LIPSS实现的材料表面润湿性、摩擦力学、光学特性的改善提供了一定的研究基础。 展开更多
关键词 激光诱导表面周期性结构 聚合物薄膜 纳秒激光 表面改性
下载PDF
偏振激光诱导的薄膜表面周期性自组织结构
19
作者 于威 卞雅兰 +1 位作者 张力 郑炯 《光电子.激光》 EI CAS CSCD 北大核心 2010年第5期691-694,共4页
本文研究了激光诱导的周期性表面结构(LIPSS)在聚甲基丙烯酸甲酯(PMMA)薄膜表面的形成过程。在导电玻璃衬底上制备得到PMMA薄膜,经p偏振的XeCl准分子激光照射后形成周期性的褶皱结构。用原子力显微镜(AFM)观察发现,形成的褶皱结构周期... 本文研究了激光诱导的周期性表面结构(LIPSS)在聚甲基丙烯酸甲酯(PMMA)薄膜表面的形成过程。在导电玻璃衬底上制备得到PMMA薄膜,经p偏振的XeCl准分子激光照射后形成周期性的褶皱结构。用原子力显微镜(AFM)观察发现,形成的褶皱结构周期具有纳米量级,且当引入外加电场时,褶皱形成所需的激光脉冲数减少到2。当外加电压增加到30V时,褶皱的周期间隔明显减小,LIPSS变得不可控,出现了柱状的自组织结构。与直接用准分子激光照射的薄膜样品相比,外加辅助电压的引入改变了PMMA样品表面褶皱结构形成的时间和周期大小,褶皱形成的内部驱动力也发生了变化。 展开更多
关键词 激光诱导的周期性表面结构(lipss) 褶皱 聚甲基丙烯酸甲酯(PMMA) XECL准分子激光 形貌
原文传递
飞秒激光诱导周期性表面结构及其应用 被引量:3
20
作者 刘树青 胡洁 赵梦娇 《科学通报》 EI CAS CSCD 北大核心 2016年第14期1560-1573,共14页
近年来,飞秒激光微纳加工技术引起了科学界的广泛关注.飞秒激光脉冲凭借其超短脉宽及超强的瞬时功率,较传统的激光加工有着明显的优势:几乎可以加工任何材料,非接触加工,非热加工,加工精度高,能够加工亚微米级结构和三维复杂结构,加工... 近年来,飞秒激光微纳加工技术引起了科学界的广泛关注.飞秒激光脉冲凭借其超短脉宽及超强的瞬时功率,较传统的激光加工有着明显的优势:几乎可以加工任何材料,非接触加工,非热加工,加工精度高,能够加工亚微米级结构和三维复杂结构,加工过程耗能低.飞秒激光加工材料的过程中会产生周期性的表面结构,这些表面结构会对材料的表面性能产生明显的影响,并且在国防、医疗、高端制造等多个领域具有巨大的应用潜力.因此,国内外研究人员对飞秒激光诱导周期性表面结构进行了系统深入的理论研究和实验研究.本文简要阐述了飞秒激光的基本特点及飞秒激光微纳加工的独特优势,对近年来关于飞秒激光诱导周期性表面结构(laser induced periodic surface structure,LIPSS)的理论与实验研究进行了综述,并阐述了这种周期性表面结构对材料表面浸润特性、光学特性以及表面拉曼增强的影响和研究进展,最后对LIPSS未来的研究方向进行了预测和展望. 展开更多
关键词 飞秒激光 周期性表面结构 微纳加工 表面浸润特性 表面光学特性 表面拉曼增强
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部