To overcome the deficiency of traditional mathematical statistics methods,an adaptive Lasso grey model algorithm for regional FDI(foreign direct investment)prediction is proposed in this paper,and its validity is anal...To overcome the deficiency of traditional mathematical statistics methods,an adaptive Lasso grey model algorithm for regional FDI(foreign direct investment)prediction is proposed in this paper,and its validity is analyzed.Firstly,the characteristics of the FDI data in six provinces of Central China are generalized,and the mixture model’s constituent variables of the Lasso grey problem as well as the grey model are defined.Next,based on the influencing factors of regional FDI statistics(mean values of regional FDI and median values of regional FDI),an adaptive Lasso grey model algorithm for regional FDI was established.Then,an application test in Central China is taken as a case study to illustrate the feasibility of the adaptive Lasso grey model algorithm in regional FDI prediction.We also select RMSE(root mean square error)and MAE(mean absolute error)to demonstrate the convergence and the validity of the algorithm.Finally,we train this proposedal gorithm according to the regional FDI statistical data in six provinces in Central China from 2006 to 2018.We then use it to predict the regional FDI statistical data from 2019 to 2023 and show its changing tendency.The extended work for the adaptive Lasso grey model algorithm and its procedure to other regional economic fields is also discussed.展开更多
Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating informa...Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.展开更多
Screening biomolecular markers from high-dimensional biological data is one of the long-standing tasks for biomedical translational research.With its advantages in both feature shrinkage and biological interpretabilit...Screening biomolecular markers from high-dimensional biological data is one of the long-standing tasks for biomedical translational research.With its advantages in both feature shrinkage and biological interpretability,Least Absolute Shrinkage and Selection Operator(LASSO)algorithm is one of the most popular methods for the scenarios of clinical biomarker development.However,in practice,applying LASSO on omics-based data with high dimensions and low-sample size may usually result in an excess number of predictive variables,leading to the overfitting of the model.Here,we present VSOLassoBag,a wrapped LASSO approach by integrating an ensemble learning strategy to help select efficient and stable variables with high confidence from omics-based data.Using a bagging strategy in combination with a parametric method or inflection point search method,VSOLassoBag can integrate and vote variables generated from multiple LASSO models to determine the optimal candidates.The application of VSOLassoBag on both simulation datasets and real-world datasets shows that the algorithm can effectively identify markers for either case-control binary classification or prognosis prediction.In addition,by comparing with multiple existing algorithms,VSOLassoBag shows a comparable performance under different scenarios while resulting in fewer features than others.In summary,VSOLassoBag,which is available at https://seqworld.com/VSOLassoBag/under the GPL v3 license,provides an alternative strategy for selecting reliable biomarkers from high-dimensional omics data.For user’s convenience,we implement VSOLassoBag as an R package that provides multithreading computing configurations.展开更多
基金This work was supported in part by the National Key R&D Program of China(No.2019YFE0122600),author H.H,https://service.most.gov.cn/in part by the Project of Centre for Innovation Research in Social Governance of Changsha University of Science and Technology(No.2017ZXB07),author J.H,https://www.csust.edu.cn/mksxy/yjjd/shzlcxyjzx.htm+2 种基金in part by the Public Relations Project of Philosophy and Social Science Research Project of the Ministry of Education(No.17JZD022),author J.L,http://www.moe.gov.cn/in part by the Key Scientific Research Projects of Hunan Provincial Department of Education(No.19A015),author J.L,http://jyt.hunan.gov.cn/in part by the Hunan 13th five-year Education Planning Project(No.XJK19CGD011),author J.H,http://ghkt.hntky.com/.
文摘To overcome the deficiency of traditional mathematical statistics methods,an adaptive Lasso grey model algorithm for regional FDI(foreign direct investment)prediction is proposed in this paper,and its validity is analyzed.Firstly,the characteristics of the FDI data in six provinces of Central China are generalized,and the mixture model’s constituent variables of the Lasso grey problem as well as the grey model are defined.Next,based on the influencing factors of regional FDI statistics(mean values of regional FDI and median values of regional FDI),an adaptive Lasso grey model algorithm for regional FDI was established.Then,an application test in Central China is taken as a case study to illustrate the feasibility of the adaptive Lasso grey model algorithm in regional FDI prediction.We also select RMSE(root mean square error)and MAE(mean absolute error)to demonstrate the convergence and the validity of the algorithm.Finally,we train this proposedal gorithm according to the regional FDI statistical data in six provinces in Central China from 2006 to 2018.We then use it to predict the regional FDI statistical data from 2019 to 2023 and show its changing tendency.The extended work for the adaptive Lasso grey model algorithm and its procedure to other regional economic fields is also discussed.
基金Supported by the National Natural Science Foundation of China(11076015)the Shandong Provincial Natural Science Foundation(ZR2010FL011)the Scientific Foundation of Liaocheng University(X10010)~~
文摘Sparsity preserving projection(SPP) is a popular graph-based dimensionality reduction(DR) method, which has been successfully applied to solve face recognition recently. SPP contains natural discriminating information by preserving sparse reconstruction relationship of data sets. However, SPP suffers from the fact that every new feature learned from data sets is linear combinations of all the original features, which often makes it difficult to interpret the results. To address this issue, a novel DR method called dual-sparsity preserving projection (DSPP) is proposed to further impose sparsity constraints on the projection directions of SPP. Specifically, the proposed method casts the projection function learning of SPP into a regression-type optimization problem, and then the sparse projections can be efficiently computed by the related lasso algorithm. Experimental results from face databases demonstrate the effectiveness of the proposed algorithm.
基金supported by National Key R&D Program of China(2021YFA1302100 to Q.Z)the National Natural Science Foundation of China(82172861 to Q.Z)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2021A1515011743 to Q.Z)National Key Clinical Discipline(to D.Z)。
文摘Screening biomolecular markers from high-dimensional biological data is one of the long-standing tasks for biomedical translational research.With its advantages in both feature shrinkage and biological interpretability,Least Absolute Shrinkage and Selection Operator(LASSO)algorithm is one of the most popular methods for the scenarios of clinical biomarker development.However,in practice,applying LASSO on omics-based data with high dimensions and low-sample size may usually result in an excess number of predictive variables,leading to the overfitting of the model.Here,we present VSOLassoBag,a wrapped LASSO approach by integrating an ensemble learning strategy to help select efficient and stable variables with high confidence from omics-based data.Using a bagging strategy in combination with a parametric method or inflection point search method,VSOLassoBag can integrate and vote variables generated from multiple LASSO models to determine the optimal candidates.The application of VSOLassoBag on both simulation datasets and real-world datasets shows that the algorithm can effectively identify markers for either case-control binary classification or prognosis prediction.In addition,by comparing with multiple existing algorithms,VSOLassoBag shows a comparable performance under different scenarios while resulting in fewer features than others.In summary,VSOLassoBag,which is available at https://seqworld.com/VSOLassoBag/under the GPL v3 license,provides an alternative strategy for selecting reliable biomarkers from high-dimensional omics data.For user’s convenience,we implement VSOLassoBag as an R package that provides multithreading computing configurations.