期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Lasso-Huber的近红外光谱特征波长选择方法及应用
被引量:
1
1
作者
郭拓
徐凤捷
+1 位作者
马晋芳
肖环贤
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024年第3期737-743,共7页
在近红外光谱(NIRS)波长筛选过程中,当变量数目远大于样本量时,特征波长的选择是一个极具挑战性的问题。Lasso与Elastic Net算法虽被用于大维小样本数据的变量选择,但二者均以最小平方误差作为损失函数的度量方法来选择特征变量。因此,...
在近红外光谱(NIRS)波长筛选过程中,当变量数目远大于样本量时,特征波长的选择是一个极具挑战性的问题。Lasso与Elastic Net算法虽被用于大维小样本数据的变量选择,但二者均以最小平方误差作为损失函数的度量方法来选择特征变量。因此,当样本中含有异常点时,经两种算法建立的模型对异常点更加敏感,导致模型向异常点偏移,鲁棒性降低。针对上述问题,采用Huber函数作为损失函数,提出了Lasso-Huber法进行近红外特征波长选择,结合偏最小二乘(PLS)方法建立安胎丸质控指标成分的定量校正模型,并与全波长建模、 Lasso与Elastic-Net方法波长选择后建模的模型性能进行对比。本实验采集21批安胎丸的近红外光谱数据共116条,其中101条数据作为校正集,采用留一交叉验证法对模型进行内部验证,另外15条数据则作为验证集用于外部验证。对于校正集中的异常光谱,使用基于主成分分析(PCA)的马氏距离法(MD)进行检测。以安胎丸的质控指标成分之一阿魏酸为例,采用Lasso、 Elastic-Net和Lasso-Huber方法分别筛选了安胎丸样品无异常光谱中69、 155和87个特征波长。其中Lasso-Huber法结合PLS建立的预测模型效果最佳,外部验证的RP2和SEP分别为0.953 1和0.058 7。此外,通过对校正集中是否包含异常光谱的校正模型预测性能对比发现,Lasso-Huber法在包含异常光谱的建模中更具优势。结果显示,Lasso-Huber算法优选出最佳波长点数为88,结合PLS建立的模型性能R_(v)^(2)为0.967 3,而Lasso方法的R_(v)^(2)为0.840 5, Elastic-Net方法的R_(v)^(2)为0.834 7,全波长建模的R_(v)^(2)为0.852 0。可见,在含有异常光谱的样本中,Lasso-Huber法不仅减少了特征波段的数量,同时降低了算法对异常光谱的敏感性,提高了模型的准确度和鲁棒性。从简化模型的角度上比较,Lasso法和Elastic-Net法的建模时间分别为61.826 0和79.959 9 s,而Lasso-Huber建模时间仅为1.360 8 s,因此,该算法更有望未来集成于实际生产应用的近红外光谱建模软件中。
展开更多
关键词
近红外光谱
波长选择
大维小样本
定量校正模型
lasso-huber
下载PDF
职称材料
基于稀疏Group Lasso惩罚的分位数回归
2
作者
张蕊
阎爱玲
《数值计算与计算机应用》
2024年第2期174-188,共15页
在高维数据分析中,惩罚分位数回归是进行变量选择和参数估计的有效方法.在实际应用中,变量常以分组形式呈现,为同时实现组间稀疏性和组内稀疏性,本文研究了带稀疏Group Lasso惩罚的分位数回归模型.为解决目标函数的非光滑性带来的计算挑...
在高维数据分析中,惩罚分位数回归是进行变量选择和参数估计的有效方法.在实际应用中,变量常以分组形式呈现,为同时实现组间稀疏性和组内稀疏性,本文研究了带稀疏Group Lasso惩罚的分位数回归模型.为解决目标函数的非光滑性带来的计算挑战,利用分位数Huber函数近似分位数损失函数,得到稀疏Group Lasso惩罚分位数Huber回归模型(SGLQHR).基于Groupwise Majorization Descent(GMD)算法提出了一种快速、有效算法求解该模型,并建立算法收敛性.数值实验和实例分析验证了该算法的有效性.
展开更多
关键词
分位数回归
稀疏Group
Lasso
分位数Huber函数
GMD算法
原文传递
题名
基于Lasso-Huber的近红外光谱特征波长选择方法及应用
被引量:
1
1
作者
郭拓
徐凤捷
马晋芳
肖环贤
机构
陕西科技大学电子信息与人工智能学院
暨南大学光电系
江西保利制药有限公司
出处
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024年第3期737-743,共7页
基金
国家药品监督管理局药品快速检验技术重点实验室开放课题(KF2022006)
广州市科技计划项目珠江科技新星专项(201610010113)
国家自然科学基金项目(62031021)资助。
文摘
在近红外光谱(NIRS)波长筛选过程中,当变量数目远大于样本量时,特征波长的选择是一个极具挑战性的问题。Lasso与Elastic Net算法虽被用于大维小样本数据的变量选择,但二者均以最小平方误差作为损失函数的度量方法来选择特征变量。因此,当样本中含有异常点时,经两种算法建立的模型对异常点更加敏感,导致模型向异常点偏移,鲁棒性降低。针对上述问题,采用Huber函数作为损失函数,提出了Lasso-Huber法进行近红外特征波长选择,结合偏最小二乘(PLS)方法建立安胎丸质控指标成分的定量校正模型,并与全波长建模、 Lasso与Elastic-Net方法波长选择后建模的模型性能进行对比。本实验采集21批安胎丸的近红外光谱数据共116条,其中101条数据作为校正集,采用留一交叉验证法对模型进行内部验证,另外15条数据则作为验证集用于外部验证。对于校正集中的异常光谱,使用基于主成分分析(PCA)的马氏距离法(MD)进行检测。以安胎丸的质控指标成分之一阿魏酸为例,采用Lasso、 Elastic-Net和Lasso-Huber方法分别筛选了安胎丸样品无异常光谱中69、 155和87个特征波长。其中Lasso-Huber法结合PLS建立的预测模型效果最佳,外部验证的RP2和SEP分别为0.953 1和0.058 7。此外,通过对校正集中是否包含异常光谱的校正模型预测性能对比发现,Lasso-Huber法在包含异常光谱的建模中更具优势。结果显示,Lasso-Huber算法优选出最佳波长点数为88,结合PLS建立的模型性能R_(v)^(2)为0.967 3,而Lasso方法的R_(v)^(2)为0.840 5, Elastic-Net方法的R_(v)^(2)为0.834 7,全波长建模的R_(v)^(2)为0.852 0。可见,在含有异常光谱的样本中,Lasso-Huber法不仅减少了特征波段的数量,同时降低了算法对异常光谱的敏感性,提高了模型的准确度和鲁棒性。从简化模型的角度上比较,Lasso法和Elastic-Net法的建模时间分别为61.826 0和79.959 9 s,而Lasso-Huber建模时间仅为1.360 8 s,因此,该算法更有望未来集成于实际生产应用的近红外光谱建模软件中。
关键词
近红外光谱
波长选择
大维小样本
定量校正模型
lasso-huber
Keywords
Near-infrared spectroscopy
Wavelength selection
Large dimension and small sample
Quantitative calibration model
lasso-huber
分类号
O657.33 [理学—分析化学]
下载PDF
职称材料
题名
基于稀疏Group Lasso惩罚的分位数回归
2
作者
张蕊
阎爱玲
机构
河北工业大学理学院
出处
《数值计算与计算机应用》
2024年第2期174-188,共15页
基金
国家自然科学基金(12271022)
河北自然科学基金(A2023202038)资助
文摘
在高维数据分析中,惩罚分位数回归是进行变量选择和参数估计的有效方法.在实际应用中,变量常以分组形式呈现,为同时实现组间稀疏性和组内稀疏性,本文研究了带稀疏Group Lasso惩罚的分位数回归模型.为解决目标函数的非光滑性带来的计算挑战,利用分位数Huber函数近似分位数损失函数,得到稀疏Group Lasso惩罚分位数Huber回归模型(SGLQHR).基于Groupwise Majorization Descent(GMD)算法提出了一种快速、有效算法求解该模型,并建立算法收敛性.数值实验和实例分析验证了该算法的有效性.
关键词
分位数回归
稀疏Group
Lasso
分位数Huber函数
GMD算法
Keywords
Quantile regression
Sparse Group Lasso
Quantile Huber function
GMD algorithm
分类号
O212.1 [理学—概率论与数理统计]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Lasso-Huber的近红外光谱特征波长选择方法及应用
郭拓
徐凤捷
马晋芳
肖环贤
《光谱学与光谱分析》
SCIE
EI
CAS
CSCD
北大核心
2024
1
下载PDF
职称材料
2
基于稀疏Group Lasso惩罚的分位数回归
张蕊
阎爱玲
《数值计算与计算机应用》
2024
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部