期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于Lasso-Huber的近红外光谱特征波长选择方法及应用 被引量:1
1
作者 郭拓 徐凤捷 +1 位作者 马晋芳 肖环贤 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期737-743,共7页
在近红外光谱(NIRS)波长筛选过程中,当变量数目远大于样本量时,特征波长的选择是一个极具挑战性的问题。Lasso与Elastic Net算法虽被用于大维小样本数据的变量选择,但二者均以最小平方误差作为损失函数的度量方法来选择特征变量。因此,... 在近红外光谱(NIRS)波长筛选过程中,当变量数目远大于样本量时,特征波长的选择是一个极具挑战性的问题。Lasso与Elastic Net算法虽被用于大维小样本数据的变量选择,但二者均以最小平方误差作为损失函数的度量方法来选择特征变量。因此,当样本中含有异常点时,经两种算法建立的模型对异常点更加敏感,导致模型向异常点偏移,鲁棒性降低。针对上述问题,采用Huber函数作为损失函数,提出了Lasso-Huber法进行近红外特征波长选择,结合偏最小二乘(PLS)方法建立安胎丸质控指标成分的定量校正模型,并与全波长建模、 Lasso与Elastic-Net方法波长选择后建模的模型性能进行对比。本实验采集21批安胎丸的近红外光谱数据共116条,其中101条数据作为校正集,采用留一交叉验证法对模型进行内部验证,另外15条数据则作为验证集用于外部验证。对于校正集中的异常光谱,使用基于主成分分析(PCA)的马氏距离法(MD)进行检测。以安胎丸的质控指标成分之一阿魏酸为例,采用Lasso、 Elastic-Net和Lasso-Huber方法分别筛选了安胎丸样品无异常光谱中69、 155和87个特征波长。其中Lasso-Huber法结合PLS建立的预测模型效果最佳,外部验证的RP2和SEP分别为0.953 1和0.058 7。此外,通过对校正集中是否包含异常光谱的校正模型预测性能对比发现,Lasso-Huber法在包含异常光谱的建模中更具优势。结果显示,Lasso-Huber算法优选出最佳波长点数为88,结合PLS建立的模型性能R_(v)^(2)为0.967 3,而Lasso方法的R_(v)^(2)为0.840 5, Elastic-Net方法的R_(v)^(2)为0.834 7,全波长建模的R_(v)^(2)为0.852 0。可见,在含有异常光谱的样本中,Lasso-Huber法不仅减少了特征波段的数量,同时降低了算法对异常光谱的敏感性,提高了模型的准确度和鲁棒性。从简化模型的角度上比较,Lasso法和Elastic-Net法的建模时间分别为61.826 0和79.959 9 s,而Lasso-Huber建模时间仅为1.360 8 s,因此,该算法更有望未来集成于实际生产应用的近红外光谱建模软件中。 展开更多
关键词 近红外光谱 波长选择 大维小样本 定量校正模型 lasso-huber
下载PDF
基于稀疏Group Lasso惩罚的分位数回归
2
作者 张蕊 阎爱玲 《数值计算与计算机应用》 2024年第2期174-188,共15页
在高维数据分析中,惩罚分位数回归是进行变量选择和参数估计的有效方法.在实际应用中,变量常以分组形式呈现,为同时实现组间稀疏性和组内稀疏性,本文研究了带稀疏Group Lasso惩罚的分位数回归模型.为解决目标函数的非光滑性带来的计算挑... 在高维数据分析中,惩罚分位数回归是进行变量选择和参数估计的有效方法.在实际应用中,变量常以分组形式呈现,为同时实现组间稀疏性和组内稀疏性,本文研究了带稀疏Group Lasso惩罚的分位数回归模型.为解决目标函数的非光滑性带来的计算挑战,利用分位数Huber函数近似分位数损失函数,得到稀疏Group Lasso惩罚分位数Huber回归模型(SGLQHR).基于Groupwise Majorization Descent(GMD)算法提出了一种快速、有效算法求解该模型,并建立算法收敛性.数值实验和实例分析验证了该算法的有效性. 展开更多
关键词 分位数回归 稀疏Group Lasso 分位数Huber函数 GMD算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部