Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanw...Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.展开更多
The Yining Block is located in the southwestern part of the Central Asian Orogenic Belt (CAOB),which is characterized by widespread Carboniferous volcanic rocks.Recently,we carried out the National Nature Science Fo...The Yining Block is located in the southwestern part of the Central Asian Orogenic Belt (CAOB),which is characterized by widespread Carboniferous volcanic rocks.Recently,we carried out the National Nature Science Foundation of China (No.41273033) and Special Fund for Basic Scientific Research of Central Colleges (No.310827153407) project,and focused on two suits volcanic rocks from the Early Carboniferous Dahalajunshan Formation and the Late Carboniferous Yishijilike Formation.Field observations,zircon U-Pb dating,and Sr-Nd isotopic dating were conducted to evaluate the petrogenesis.展开更多
Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain ...Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.展开更多
The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rock...The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.展开更多
Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, C...Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, China. Data revealed that magnetic minerals in limestone samples from the Zarigen Formation (CP^z)are primarily composed of magnetite, while those in sandstone samples from the Nuoribagaribao Formation (Pnr) are dominated by hematite alone, or hematite and magnetite in combination. Progressive thermal, or alternating field, demagnetization allowed us to isolate a stable high temperature component (HTC) in 127 specimens from 16 sites which successfully passed the conglomerate test, consistent with primary remnance. The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D°=30.2°, Is=-40.9°, ks=269.0, a95=2.3°, N=16, which yields a corresponding paleomagnetic pole at 25.7°N, 241.5°E (alp/rim=2.8°/1.7°), and a paleolatitude of 23.4°S. Our results, together with previously reported paleomagnetic data, indicate that: (1) the NQT in Tibet, China, was located at a low latitude in the southern hemisphere, and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian; (2) the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian, and (3) the NQT subsequently moved rapidly northwards, perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean, the northern branch of the Neo-Tethys Ocean, expanded rapidly during this time.展开更多
A large number of Late Silurian–Early Devonian intrusive rocks are distributed in the central Beishan orogenic belt(BOB).Tectonic setting of these intrusive rocks is of great significance to the study of the subducti...A large number of Late Silurian–Early Devonian intrusive rocks are distributed in the central Beishan orogenic belt(BOB).Tectonic setting of these intrusive rocks is of great significance to the study of the subduction and accretion of the Paleo-Asian Ocean.Previous studies show that most of the intrusive rocks in this region are S-type or A-type granitoids.In this study,we firstly reported the Late Silurian–Early Devoniandia bases,granodiorites on the southside of the Baiyunshan ophiolitic mélanges belt,as a part of Hongliuhe-Xichangjing ophiolitic mélanges belt(HXOMB).Zircon LA-ICP-MS U-Pb dating yields emplacement ages between 418 and 397 Ma,REE distribution patterns exhibit enriched LREE and flat HREE in the diabases,the discriminant diagrams show that the diabases have geochemical characteristics of intraplate basalt.The granodiorites in this paper present more like S-and A-type granitoids reported,showing the geochemical characteristics of syn/post-collision granites.Actually,the bimodal magmatic rocks are developed during Late Silurian–Early Devonian on both sides of the HXOMB,which are related to the tectonic background of the post orogeny extension.The diabases are tholeiitic with relative strong depletedεHf(t)(+8.1 to+13.0),which are mainly from relative depleted mantle.The granodiorites are calc-alkaline with relative slightly depletedεHf(t)(+0.7 to+5.6)and the lower Mg#and MgO contents(34.6–36.9,0.50 wt.%–1.19 wt.%respectively),reflecting the source characteristics of meta-basalt.Therefore,the remelting of juvenile crust may be the main way of continental crust accretion during Late Silurian–Early Devonian in the central BOB.展开更多
基金supported financially by the NSFC projects(Grant Nos.U1403291,41802074,41830216,41202044)projects of the China Geological Survey(Grant Nos.1212010811033,12120113096500,12120113094000,DD20160123,DD20160009 and DD20179607)+1 种基金the IGCP 662 projectDDE.
文摘Numeral Permian mafic-ultramafic complexes occur in the Beishan terrane atthe northeastern margin of the Tarim craton,southwestern Central Asian Orogenic Belt,including the Pobei,Cantoushan,Bijiashan,Hongshishan,Xuanwoling,Zhongposhan and Luodong etc.,intrusions(Qin et al.,2011;Zhang et al.,2017;Xue et al.,2018).These Beishan mafic-ultramafic complexes are composed of peridotite,pyroxenite.
文摘The Yining Block is located in the southwestern part of the Central Asian Orogenic Belt (CAOB),which is characterized by widespread Carboniferous volcanic rocks.Recently,we carried out the National Nature Science Foundation of China (No.41273033) and Special Fund for Basic Scientific Research of Central Colleges (No.310827153407) project,and focused on two suits volcanic rocks from the Early Carboniferous Dahalajunshan Formation and the Late Carboniferous Yishijilike Formation.Field observations,zircon U-Pb dating,and Sr-Nd isotopic dating were conducted to evaluate the petrogenesis.
基金This study was supported by the National Natural Science Foundation of China Grant No. 4880102
文摘Deposits of 10 volcanic events of 6 stages have been discovered by the authors after detailed field and lab studies of the Benxi and Taiyuan Formations in Shandong Province and its adjacent regions. They show certain temporal-spatial distribution characteristics. Volcanic fragments were probably derived from two different volcanic sources north and south of the North China Platform, while the magma of the two volcanic sources was probably derived from the lower crust. A new stratigraphic correlation scheme is put forward for the Benxi and Taiyuan Formations in this region on the basis of previous biostratigraphic work with the regionally widespread volcanic event layers as the marker bed for the isochronous stratigraphic correlation on a super-regional scale and in conjunction with the maximum transgressive event layers.
基金the National Natural Science Foundation of China(Grant 40072077) the Tarim Oil Field Company.PetroChina(Grant 2098050230).
文摘The Wupata'erkan Group, also called Wupata'erkan Formation, distributed in the South Tianshan, Xinjiang, China, mainly consists of gray and dark gray fine-grained clastic rocks, interlayered with volcanic rocks, carbonates and cherts. Some ultra-basic rocks (blocks) punctuate the formation. The formation was variously assigned to Silurian-Middle Devonian, Silurian-Lower Devonian, and pre-Devonian, mainly based on Atrypa bodini Mansuy, Hypothyridina parallelepipedia (Brour.) and Prismatophyllum hexagonum Yoh collected from the limestone interlayers, respectively. However, radiolarian fossils obtained from 24 chert specimens of the Wupata'erkan Group, mainly include Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon, Albaillella sp. cf. A. indensis Won, Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto, Albaillella sp. and Latentifistulidae gen. et. sp. indet., are earliest Carboniferous and Late Permian. The earliest Carboniferous assemblage is characterized by Albaillella sp. cf. A. undulata Deflandre, Albaillella sp. cf. A. paradoxa Deflandre, Albaillella cf. A. deflandrei Gourmelon and Albaillella sp. cf. A. indensis Won, and the Late Permian assemblage by Albaillella sp. cf. A. excelsa Ishiga, Kito and Imoto. This new stratigraphic evidence indicates that the Wupata'erkan Group is possibly composed of rocks with different ages from Silurian to Permian, and therefore, it is probably an ophiolite melange. The discovery of Late Permian Albaillella sp. cf. A. excelsa provides more reliable evidence supporting the existence of a Permian relic ancient oceanic basin in the western part of Xinjiang South Tianshan.
基金supported by the National Natural Science Foundation of China(Grant Nos.41304049 and 41421002)the Special Fund for Strategic Pilot Technology of the Chinese Academy of Sciences(Grant No. XDB03010000)
文摘Results of a systematic paleomagnetic study are reported based on Late Carboniferous to Early Permian sedimentary rocks on the north slope of the Tanggula Mountains, in the northern Qiangtang terrane (NQT), Tibet, China. Data revealed that magnetic minerals in limestone samples from the Zarigen Formation (CP^z)are primarily composed of magnetite, while those in sandstone samples from the Nuoribagaribao Formation (Pnr) are dominated by hematite alone, or hematite and magnetite in combination. Progressive thermal, or alternating field, demagnetization allowed us to isolate a stable high temperature component (HTC) in 127 specimens from 16 sites which successfully passed the conglomerate test, consistent with primary remnance. The tilt-corrected mean direction for Late Carboniferous to Early Permian rocks in the northern Qiangtang terrane is D°=30.2°, Is=-40.9°, ks=269.0, a95=2.3°, N=16, which yields a corresponding paleomagnetic pole at 25.7°N, 241.5°E (alp/rim=2.8°/1.7°), and a paleolatitude of 23.4°S. Our results, together with previously reported paleomagnetic data, indicate that: (1) the NQT in Tibet, China, was located at a low latitude in the southern hemisphere, and may have belonged to the northern margin of Gondwana during the Late Carboniferous to Early Permian; (2) the Paleo-Tethys Ocean was large during the Late Carboniferous to Early Permian, and (3) the NQT subsequently moved rapidly northwards, perhaps related to the fact that the Paleo-Tethys Ocean was rapidly contracting from the Late Permian to Late Triassic while the Bangong Lake-Nujiang Ocean, the northern branch of the Neo-Tethys Ocean, expanded rapidly during this time.
基金supported by the Geological Survey of China(Nos.DD20160039,DD20190038)。
文摘A large number of Late Silurian–Early Devonian intrusive rocks are distributed in the central Beishan orogenic belt(BOB).Tectonic setting of these intrusive rocks is of great significance to the study of the subduction and accretion of the Paleo-Asian Ocean.Previous studies show that most of the intrusive rocks in this region are S-type or A-type granitoids.In this study,we firstly reported the Late Silurian–Early Devoniandia bases,granodiorites on the southside of the Baiyunshan ophiolitic mélanges belt,as a part of Hongliuhe-Xichangjing ophiolitic mélanges belt(HXOMB).Zircon LA-ICP-MS U-Pb dating yields emplacement ages between 418 and 397 Ma,REE distribution patterns exhibit enriched LREE and flat HREE in the diabases,the discriminant diagrams show that the diabases have geochemical characteristics of intraplate basalt.The granodiorites in this paper present more like S-and A-type granitoids reported,showing the geochemical characteristics of syn/post-collision granites.Actually,the bimodal magmatic rocks are developed during Late Silurian–Early Devonian on both sides of the HXOMB,which are related to the tectonic background of the post orogeny extension.The diabases are tholeiitic with relative strong depletedεHf(t)(+8.1 to+13.0),which are mainly from relative depleted mantle.The granodiorites are calc-alkaline with relative slightly depletedεHf(t)(+0.7 to+5.6)and the lower Mg#and MgO contents(34.6–36.9,0.50 wt.%–1.19 wt.%respectively),reflecting the source characteristics of meta-basalt.Therefore,the remelting of juvenile crust may be the main way of continental crust accretion during Late Silurian–Early Devonian in the central BOB.