A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decompos...A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decomposition (SVD) to reduce the dimension of the matrix and extract features, and then the sentence similarity is computed. The sentences are clustered according to similarity of sentences. The centroid sentences are selected from each class. Finally, the selected sentences are ordered to generate the summarization. The evaluation and results are presented, which prove that the proposed methods are efficient.展开更多
With the purpose of improving the accuracy of text categorization and reducing the dimension of the feature space,this paper proposes a two-stage feature selection method based on a novel category correlation degree(C...With the purpose of improving the accuracy of text categorization and reducing the dimension of the feature space,this paper proposes a two-stage feature selection method based on a novel category correlation degree(CCD)method and latent semantic indexing(LSI).In the first stage,a novel CCD method is proposed to select the most effective features for text classification,which is more effective than the traditional feature selection method.In the second stage,document representation requires a high dimensionality of the feature space and does not take into account the semantic relation between features,which leads to a poor categorization accuracy.So LSI method is proposed to solve these problems by using statistically derived conceptual indices to replace the individual terms which can discover the important correlative relationship between features and reduce the feature space dimension.Firstly,each feature in our algorithm is ranked depending on their importance of classification using CCD method.Secondly,we construct a new semantic space based on LSI method among features.The experimental results have proved that our method can reduce effectively the dimension of text vector and improve the performance of text categorization.展开更多
文摘A multi-document summarization method based on Latent Semantic Indexing (LSI) is proposed. The method combines several reports on the same issue into a matrix of terms and sentences, and uses a Singular Value Decomposition (SVD) to reduce the dimension of the matrix and extract features, and then the sentence similarity is computed. The sentences are clustered according to similarity of sentences. The centroid sentences are selected from each class. Finally, the selected sentences are ordered to generate the summarization. The evaluation and results are presented, which prove that the proposed methods are efficient.
基金the National Natural Science Foundation of China(Nos.61073193 and 61300230)the Key Science and Technology Foundation of Gansu Province(No.1102FKDA010)+1 种基金the Natural Science Foundation of Gansu Province(No.1107RJZA188)the Science and Technology Support Program of Gansu Province(No.1104GKCA037)
文摘With the purpose of improving the accuracy of text categorization and reducing the dimension of the feature space,this paper proposes a two-stage feature selection method based on a novel category correlation degree(CCD)method and latent semantic indexing(LSI).In the first stage,a novel CCD method is proposed to select the most effective features for text classification,which is more effective than the traditional feature selection method.In the second stage,document representation requires a high dimensionality of the feature space and does not take into account the semantic relation between features,which leads to a poor categorization accuracy.So LSI method is proposed to solve these problems by using statistically derived conceptual indices to replace the individual terms which can discover the important correlative relationship between features and reduce the feature space dimension.Firstly,each feature in our algorithm is ranked depending on their importance of classification using CCD method.Secondly,we construct a new semantic space based on LSI method among features.The experimental results have proved that our method can reduce effectively the dimension of text vector and improve the performance of text categorization.