期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
Randomized Latent Factor Model for High-dimensional and Sparse Matrices from Industrial Applications 被引量:13
1
作者 Mingsheng Shang Xin Luo +3 位作者 Zhigang Liu Jia Chen Ye Yuan MengChu Zhou 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2019年第1期131-141,共11页
Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts itera... Latent factor(LF) models are highly effective in extracting useful knowledge from High-Dimensional and Sparse(HiDS) matrices which are commonly seen in various industrial applications. An LF model usually adopts iterative optimizers,which may consume many iterations to achieve a local optima,resulting in considerable time cost. Hence, determining how to accelerate the training process for LF models has become a significant issue. To address this, this work proposes a randomized latent factor(RLF) model. It incorporates the principle of randomized learning techniques from neural networks into the LF analysis of HiDS matrices, thereby greatly alleviating computational burden. It also extends a standard learning process for randomized neural networks in context of LF analysis to make the resulting model represent an HiDS matrix correctly.Experimental results on three HiDS matrices from industrial applications demonstrate that compared with state-of-the-art LF models, RLF is able to achieve significantly higher computational efficiency and comparable prediction accuracy for missing data.I provides an important alternative approach to LF analysis of HiDS matrices, which is especially desired for industrial applications demanding highly efficient models. 展开更多
关键词 Big data high-dimensional and sparse matrix latent factor analysis latent factor model randomized learning
下载PDF
Collaboration Filtering Recommendation Algorithm Based on the Latent Factor Model and Improved Spectral Clustering
2
作者 Xiaolan Xie Mengnan Qiu 《国际计算机前沿大会会议论文集》 2019年第1期98-100,共3页
Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In... Due to the development of E-Commerce, collaboration filtering (CF) recommendation algorithm becomes popular in recent years. It has some limitations such as cold start, data sparseness and low operation efficiency. In this paper, a CF recommendation algorithm is propose based on the latent factor model and improved spectral clustering (CFRALFMISC) to improve the forecasting precision. The latent factor model was firstly adopted to predict the missing score. Then, the cluster validity index was used to determine the number of clusters. Finally, the spectral clustering was improved by using the FCM algorithm to replace the K-means in the spectral clustering. The simulation results show that CFRALFMISC can effectively improve the recommendation precision compared with other algorithms. 展开更多
关键词 COLLABORATION FILTERING RECOMMENDATION algorithm latent factor model CLUSTER validity index SPECTRAL clustering
下载PDF
Robust Latent Factor Analysis for Precise Representation of High-Dimensional and Sparse Data 被引量:5
3
作者 Di Wu Xin Luo 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第4期796-805,共10页
High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurat... High-dimensional and sparse(HiDS)matrices commonly arise in various industrial applications,e.g.,recommender systems(RSs),social networks,and wireless sensor networks.Since they contain rich information,how to accurately represent them is of great significance.A latent factor(LF)model is one of the most popular and successful ways to address this issue.Current LF models mostly adopt L2-norm-oriented Loss to represent an HiDS matrix,i.e.,they sum the errors between observed data and predicted ones with L2-norm.Yet L2-norm is sensitive to outlier data.Unfortunately,outlier data usually exist in such matrices.For example,an HiDS matrix from RSs commonly contains many outlier ratings due to some heedless/malicious users.To address this issue,this work proposes a smooth L1-norm-oriented latent factor(SL-LF)model.Its main idea is to adopt smooth L1-norm rather than L2-norm to form its Loss,making it have both strong robustness and high accuracy in predicting the missing data of an HiDS matrix.Experimental results on eight HiDS matrices generated by industrial applications verify that the proposed SL-LF model not only is robust to the outlier data but also has significantly higher prediction accuracy than state-of-the-art models when they are used to predict the missing data of HiDS matrices. 展开更多
关键词 High-dimensional and sparse matrix L1-norm L2 norm latent factor model recommender system smooth L1-norm
下载PDF
New approaches to cognitive work analysis through latent variable modeling in mining operations 被引量:1
4
作者 S.Li Y.A.Sari M.Kumral 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2019年第4期549-556,共8页
This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and laten... This paper discusses the utilization of latent variable modeling related to occupational health and safety in the mining industry.Latent variable modeling,which is a statistical model that relates observable and latent variables,could be used to facilitate researchers’understandings of the underlying constructs or hypothetical factors and their magnitude of effect that constitute a complex system.This enhanced understanding,in turn,can help emphasize the important factors to improve mine safety.The most commonly used techniques include the exploratory factor analysis(EFA),the confirmatory factor analysis(CFA)and the structural equation model with latent variables(SEM).A critical comparison of the three techniques regarding mine safety is provided.Possible applications of latent variable modeling in mining engineering are explored.In this scope,relevant research papers were reviewed.They suggest that the application of such methods could prove useful in mine accident and safety research.Application of latent variables analysis in cognitive work analysis was proposed to improve the understanding of human-work relationships in mining operations. 展开更多
关键词 latent variables EXPLORATORY factor ANALYSIS Confirmatory factor ANALYSIS Structural equation modeling OCCUPATIONAL health and SAFETY Mine SAFETY
下载PDF
基于CNN-LFM模型的个性化推荐 被引量:5
5
作者 梁昌勇 范汝鑫 +1 位作者 陆文星 赵树平 《计算机仿真》 北大核心 2020年第3期399-404,共6页
评分数据的稀疏性和新物品的冷启动问题一直是阻碍推荐系统发展的难题。针对这些问题,利用物品的图像数据作为辅助信息以提高评分预测的准确性,提出一种基于卷积神经网络与隐语义模型的推荐模型(CNN-LFM)。CNN-LFM模型利用隐语义模型挖... 评分数据的稀疏性和新物品的冷启动问题一直是阻碍推荐系统发展的难题。针对这些问题,利用物品的图像数据作为辅助信息以提高评分预测的准确性,提出一种基于卷积神经网络与隐语义模型的推荐模型(CNN-LFM)。CNN-LFM模型利用隐语义模型挖掘评分数据,获得用户和物品的潜在特征,其中物品的潜在特征会在卷积神经网络提取的图像特征的约束下不断完善。在真实数据集下进行实验,对结果的定量和定性分析表明CNN-LFM模型不存在新物品的冷启动问题,即使当评分数据十分稀疏时,其性能也远远优于其它推荐模型。 展开更多
关键词 卷积神经网络 个性化推荐 评分数据 隐语义模型 图像数据 推荐模型 潜在特征 CNN
下载PDF
基于LFM矩阵分解的推荐算法优化研究 被引量:19
6
作者 陈晔 刘志强 《计算机工程与应用》 CSCD 北大核心 2019年第2期116-120,167,共6页
在推荐系统中,基于矩阵分解的推荐算法是目前的研究热点之一,然而普通矩阵分解算法的推荐精确度偏低,为了改善该问题,以矩阵分解算法中的潜在因子模型(LFM)优化为研究对象,分析LFM中两种基础推荐算法在寻优速率与推荐精度上的不足,然后... 在推荐系统中,基于矩阵分解的推荐算法是目前的研究热点之一,然而普通矩阵分解算法的推荐精确度偏低,为了改善该问题,以矩阵分解算法中的潜在因子模型(LFM)优化为研究对象,分析LFM中两种基础推荐算法在寻优速率与推荐精度上的不足,然后提出两种改进算法:带冲量的批量学习算法和混合学习算法,最后通过实验数据测试,对比了不同算法的推荐效果,结果证明改进算法的性能更优。 展开更多
关键词 矩阵分解 潜在因子模型 推荐算法 带冲量的批量学习算法 混合学习算法
下载PDF
隐式反馈场景下的LFM-XGB-LR融合推荐算法 被引量:3
7
作者 程晓娜 孙志锋 《计算机工程与应用》 CSCD 北大核心 2020年第5期85-92,共8页
在信息流消费场景中,利用用户的隐式行为反馈,对用户进行个性化内容推荐是核心问题。而由于行为惯性的问题,用户通常只是浏览feed流,互动行为数据稀疏,导致传统方法在个性化等方面性能不高。针对该问题,设计了隐式反馈的权重转化方法,提... 在信息流消费场景中,利用用户的隐式行为反馈,对用户进行个性化内容推荐是核心问题。而由于行为惯性的问题,用户通常只是浏览feed流,互动行为数据稀疏,导致传统方法在个性化等方面性能不高。针对该问题,设计了隐式反馈的权重转化方法,提出LFM-XGB-LR融合模型,利用LFM生成嵌入向量,结合了XGB在特征交叉和LR在离散计算上的优势。实验结果表明,基于LFM的嵌入改善了模型个性化的问题,该融合模型在各项指标上均有稳定提升。 展开更多
关键词 隐语义模型 隐向量嵌入 隐式反馈 融合模型 推荐系统
下载PDF
一种基于Skill-LFM的知识点推荐方法 被引量:1
8
作者 方建生 许言午 +1 位作者 蔡瑞初 秦艳 《中国科学技术大学学报》 CAS CSCD 北大核心 2018年第9期755-761,共7页
目前,知识库的用户主要是通过检索获取所需知识点,这种依赖搜索引擎解决信息过载的方法,对实时在线服务而言效率低下,对离线知识学习来说不具有完整性和连续性,为此提出由知识库系统根据用户技能水平主动推荐知识点给用户,提高决策效率... 目前,知识库的用户主要是通过检索获取所需知识点,这种依赖搜索引擎解决信息过载的方法,对实时在线服务而言效率低下,对离线知识学习来说不具有完整性和连续性,为此提出由知识库系统根据用户技能水平主动推荐知识点给用户,提高决策效率,并有助于用户建立完备的知识学习体系.基于用户对知识点的历史行为以及用户对知识的学习能力,提出一种融合技能的隐语义模型的协同过滤推荐方法,将知识点难易程度作为潜在因子,同时考虑用户的能力水平预测用户对知识点的偏好水平.在呼叫中心知识库的数据集上进行测试,其均方根误差优于基础隐语义模型.综合知识点推荐的应用领域和知识学习行为数据的特点,对于知识点推荐方法,可从融合用户和知识点上下文信息的推荐技术上深入研究. 展开更多
关键词 协同过滤 隐语义模型 知识库 决策支持 推荐系统 上下文感知
下载PDF
基于改进的LFM算法的短视频推荐系统的研究与实现 被引量:4
9
作者 彭宇 宁慧 张汝波 《应用科技》 CAS 2022年第3期64-68,共5页
为解决传统潜在因子模型(latent factor model,LFM)算法无法为用户实时推荐的问题,本文在LFM算法的基础上结合基于物品的协同过滤(item collaborative filtering,ItemCF)算法来实现短视频的推荐。在用户对某视频表现出正反馈时,使用Ite... 为解决传统潜在因子模型(latent factor model,LFM)算法无法为用户实时推荐的问题,本文在LFM算法的基础上结合基于物品的协同过滤(item collaborative filtering,ItemCF)算法来实现短视频的推荐。在用户对某视频表现出正反馈时,使用ItemCF算法计算与该视频相似度最高且用户未观看过的N个视频,并将其插入到以LFM算法为基础的推荐列表中,结合Redis缓存数据库,实现了短视频的在线实时推荐,极大提高了用户体验,也增加了服务器的运行效率。 展开更多
关键词 短视频网站 潜在因子模型 基于物品的协同过滤 推荐算法 实时推荐 视频推荐 相似度 用户行为
下载PDF
基于谱聚类和LFM的选课推荐算法设计 被引量:1
10
作者 刘旋 《现代信息科技》 2020年第1期14-16,共3页
高校教务系统中学生数量和课程种类的飞速增长,使得传统推荐算法难以处理海量、高维的选课数据,为进一步提升大学生的选课效率,文章提出一种改进的LFM隐语义模型推荐算法,首先构造选课评分数据的相似矩阵,通过谱聚类进行初始分类,然后... 高校教务系统中学生数量和课程种类的飞速增长,使得传统推荐算法难以处理海量、高维的选课数据,为进一步提升大学生的选课效率,文章提出一种改进的LFM隐语义模型推荐算法,首先构造选课评分数据的相似矩阵,通过谱聚类进行初始分类,然后分类别构建LFM模型并计算合理的推荐算法。通过在某高校的选课数据集上的对比实验,证明了本文算法具有较高的预测精度和较低的空间复杂度。 展开更多
关键词 推荐算法 隐语义模型 谱聚类算法
下载PDF
基于加速无约束张量隐因子分解模型的Web服务Qo S估计
11
作者 林铭炜 李文强 +1 位作者 许秀琴 刘健 《通信学报》 EI CSCD 北大核心 2024年第3期166-181,共16页
针对基于张量非负隐因子分解模型的Web服务QoS估计方法过于依赖非负初始随机数据以及特意设计的非负训练方法,导致模型的兼容性和扩展性不高的问题,提出了加速无约束张量隐因子分解模型。其主要思想包括三部分:将非负性约束从决策参数... 针对基于张量非负隐因子分解模型的Web服务QoS估计方法过于依赖非负初始随机数据以及特意设计的非负训练方法,导致模型的兼容性和扩展性不高的问题,提出了加速无约束张量隐因子分解模型。其主要思想包括三部分:将非负性约束从决策参数转移到输出的隐因子,并通过单元素映射函数连接它们;运用结合动量方法的随机梯度下降算法,有效提高模型的收敛速度与估计精度;给出加速无约束张量隐因子分解模型的详细算法和结果分析。在实际工业应用中的2个动态QoS数据集上的实证研究表明,与最先进的QoS估计模型相比,所提模型具有较高的计算效率和估计精度。 展开更多
关键词 服务质量 隐因子分解分析 张量非负隐因子分解模型 无约束非负 动量方法
下载PDF
冠状动脉旁路移植患者术后疲劳发展轨迹及影响因素研究
12
作者 文淑娟 徐延红 +6 位作者 吴卫华 侯利利 黄好华 姜晓梅 程玉芹 刘玉春 李思琪 《护士进修杂志》 2024年第16期1721-1727,共7页
目的探讨冠状动脉旁路移植术(coronary artery bypass grafting,CABG)患者术后疲劳发展轨迹及其影响因素。方法采用便利抽样法,选取2022年10月-2023年8月在我院心脏外科行CABG的145例患者为研究,随访过程中剔除18例,最终共纳入124例患... 目的探讨冠状动脉旁路移植术(coronary artery bypass grafting,CABG)患者术后疲劳发展轨迹及其影响因素。方法采用便利抽样法,选取2022年10月-2023年8月在我院心脏外科行CABG的145例患者为研究,随访过程中剔除18例,最终共纳入124例患者。分别在出院前1 d及出院后1、2、4个月采用一般资料调查表、中文版多维疲劳量表(multidimensional fatigue inventory-20,MFI-20)及Barthel指数评定量表对患者术后疲劳水平进行追踪调查,利用潜类别增长模型(latent class growth model,LCGM)识别潜在的术后疲劳轨迹类别,采用多分类logistic回归分析患者术后疲劳轨迹类别的影响因素。结果患者术后MFI-20得分随时间呈下降趋势(F=310.039,P<0.001),得分从出院前1 d(58.44±8.65)分降至出院后4个月(36.92±9.89)分;最终识别出3种术后疲劳轨迹类别,根据其特征分别命名为中至轻度明显下降组、中度缓慢下降组、重至中度缓慢下降组,分别占比53.2%、32.3%、14.5%。单因素分析显示:有无心肌梗死病史、有无脑卒中病史、NYHA心功能分级、术后ICU停留天数、术后左室射血分数(LVEF)、红细胞计数、血红蛋白、总胆固醇、低密度脂蛋白、日常生活活动能力与术后疲劳轨迹类别有关(均P<0.05);多因素logistic回归分析显示:术后ICU停留天数、有无心肌梗死病史、NYHA心功能分级、有无脑卒中病史、日常生活活动能力是CABG患者术后疲劳轨迹类别的主要影响因素(均P<0.05)。结论CABG患者术后疲劳发展轨迹存在异质性,医护人员应根据不同变化轨迹制定针对性护理措施,积极改善可控因素,缓解患者术后疲劳程度。 展开更多
关键词 冠状动脉旁路移植术 疲劳 纵向研究 潜类别增长模型 影响因素 护理
下载PDF
基于潜变量增长混合模型的鼻咽癌同步放化疗患者心理一致感变化轨迹分析 被引量:3
13
作者 韦淑 杨丽 +3 位作者 罗雨婷 梁秋婷 周溢 卢佳美 《军事护理》 CSCD 北大核心 2024年第2期16-20,共5页
目的探讨鼻咽癌(nasopharyngeal carcinoma,NPC)患者同步放化疗期间心理一致感的纵向发展轨迹,分析其影响因素。方法2022年11月至2023年6月,便利抽样选取广西某三级甲等综合医院同步放化疗患者225例作为研究对象,在放疗第1次、15次、30... 目的探讨鼻咽癌(nasopharyngeal carcinoma,NPC)患者同步放化疗期间心理一致感的纵向发展轨迹,分析其影响因素。方法2022年11月至2023年6月,便利抽样选取广西某三级甲等综合医院同步放化疗患者225例作为研究对象,在放疗第1次、15次、30次时采用一般资料调查表、症状困扰量表、心理一致感量表-13对其进行调查,使用潜变量增长混合模型识别其心理一致感发展轨迹,采用Logistic回归分析其影响因素。结果NPC同步放化疗患者,其心理一致感存在3种轨迹,分别为持续低平组(20.00%)、持续下降组(28.00%)、持续上升组(52.00%)。Logistic回归分析显示,症状严重程度、年龄、学历、居住地、照护者和肿瘤分期是鼻咽癌患者心理一致感的独立影响因素(均P<0.05)。结论鼻咽癌同步放化疗患者心理一致感存在群体异质性,应基于患者心理一致感变化轨迹有针对性地进行评估和干预。 展开更多
关键词 鼻咽癌 心理一致感 潜变量增长混合模型 影响因素
下载PDF
社区高血压患者收缩压波动轨迹及其影响因素的研究
14
作者 聂朦 邬娜 +10 位作者 焦惠艳 袁志权 李成英 吴龙 许月瑶 杨蕾 王煜 伍永红 钟理 李亚斐 杨敬源 《陆军军医大学学报》 CAS CSCD 北大核心 2024年第12期1457-1466,F0003,共11页
目的分析和构建社区高血压人群收缩压(systolic blood pressure,SBP)变化的轨迹模型,并分析不同SBP轨迹的影响因素。方法本研究基于社区回顾性队列,运用潜类别轨迹模型(latent class trajectory modelling,LCTM)分析社区高血压人群SBP... 目的分析和构建社区高血压人群收缩压(systolic blood pressure,SBP)变化的轨迹模型,并分析不同SBP轨迹的影响因素。方法本研究基于社区回顾性队列,运用潜类别轨迹模型(latent class trajectory modelling,LCTM)分析社区高血压人群SBP的变化模式,识别、构建SBP的纵向变化轨迹;运用无序多分类logistic回归分析不同SBP轨迹的影响因素,根据先验知识使用“有向无环图”识别和调整不同的混杂因素。结果共793名高血压患者被纳入分析,LCTM拟合的社区高血压患者SBP轨迹最优分组为3组,分别为低水平平稳组(n=561,70.74%)、下降组(n=170,21.44%)和上升组(n=62,7.82%);年龄、锻炼频率、随访方式、摄盐情况、遵医行为、有无转诊在不同SBP轨迹亚组中分布存在统计学差异(P<0.05);无序多分类logistic回归分析结果显示,以低水平平稳组为对照,“男性”、“门诊随访”的患者被分类到下降组的可能性较高,OR及95%CI分别为1.436(1.016~2.030)、1.702(1.202~2.410);而“年龄≥65岁”,“不锻炼或偶尔锻炼”,摄盐情况为“中”和“重”度的人群,被分类到上升组的可能性更高,OR及95%CI依次为1.949(1.145~3.317)、2.284(1.305~3.998)、2.433(1.272~4.654)、4.540(1.291~15.963)。结论社区高血压人群收缩压变化轨迹可分为3组,即“低水平平稳组”、“下降组”和“上升组”;性别、年龄、摄盐情况、锻炼频率、随访方式可能是收缩压轨迹的影响因素。 展开更多
关键词 社区人群 高血压 潜类别轨迹模型 收缩压轨迹 影响因素
下载PDF
ICU患者谵妄发展轨迹及危险因素研究
15
作者 孙珊珊 陶蕾 +3 位作者 钟明明 田金徽 王敏 张志刚 《医学新知》 CAS 2024年第9期978-988,共11页
目的探讨ICU患者谵妄不同变化轨迹及危险因素,为谵妄管理提供理论依据。方法于2023年3月至2023年12月采用方便抽样法选取兰州大学第一医院重症医学科的ICU患者为研究对象,使用一般资料调查表、ICU意识模糊评估法(CAM-ICU)和ICU意识模糊... 目的探讨ICU患者谵妄不同变化轨迹及危险因素,为谵妄管理提供理论依据。方法于2023年3月至2023年12月采用方便抽样法选取兰州大学第一医院重症医学科的ICU患者为研究对象,使用一般资料调查表、ICU意识模糊评估法(CAM-ICU)和ICU意识模糊评估表-7(CAM-ICU-7)、Richmond躁动-镇静评分(RASS)在收入ICU后的第24 h后(T1)进行基线评估和谵妄评估,对发生谵妄的患者在入院后第2、3、4、5 d(T2~T5)时间点使用RASS、CAM-ICU和CAM-ICU-7连续监测谵妄。采用潜类别增长模型识别谵妄轨迹类别,并分析不同类别的影响因素。结果共纳入269例ICU患者,其中126例发生谵妄。102例谵妄患者完成全程5次调查,ICU患者谵妄发生率为42.86%。潜类别增长模型结果显示含3个潜类别亚组的模型拟合结果最好,并分别命名为“持续谵妄组”(30.4%)、“高风险下降组”(29.4%)和“低风险上升组”(40.2%)。单因素分析结果显示,性别、镇静药使用类型以及不同时间点RASS评分对不同谵妄发展轨迹有影响(P<0.05)。多分类Logistic回归分析结果显示,相较于持续谵妄组,ICU患者谵妄发展为高风险下降组的预测因素主要包括性别和镇静药使用类型;相较于持续谵妄组,ICU患者发展为低风险上升组的预测因素为T1、T5时间点的RASS评分。结论ICU患者谵妄发展轨迹存在群体异质性,可分为3个潜类别,性别、镇静药使用类型和RASS评分是ICU患者谵妄发展轨迹潜类别的影响因素,医护人员应根据不同的谵妄变化轨迹对ICU患者进行个性化管理。 展开更多
关键词 重症监护室 谵妄 危险因素 潜类别增长模型 发展轨迹
下载PDF
NICU早产儿住院期间经口喂养能力变化轨迹及影响因素研究
16
作者 周敏敏 于秀荣 +1 位作者 吴玉梅 孙士艳 《护理学杂志》 CSCD 北大核心 2024年第21期6-10,67,共6页
目的探讨NICU早产儿住院期间经口喂养能力的纵向变化轨迹及其影响因素,为早产儿早期经口喂养的个体化管理提供依据。方法采用便利抽样法选取158例NICU早产儿作为研究对象,分别于早产儿入院24 h内、开始肠道喂养、完全肠道喂养、初次经... 目的探讨NICU早产儿住院期间经口喂养能力的纵向变化轨迹及其影响因素,为早产儿早期经口喂养的个体化管理提供依据。方法采用便利抽样法选取158例NICU早产儿作为研究对象,分别于早产儿入院24 h内、开始肠道喂养、完全肠道喂养、初次经口喂养、初次一半喂养、完全经口喂养和出院时,采用早产儿准备经口喂养评估量表对其经口喂养能力进行纵向追踪测评。使用潜变量增长混合模型分析其经口喂养能力变化轨迹,采用logistic回归分析其影响因素。结果早产儿经口喂养能力变化轨迹可分为高水平缓升组(32.9%)、中水平缓升组(47.5%)、低水平先降后升组(19.6%);出生胎龄、出生体质量、开始经口喂养纠正胎龄、疾病严重程度和喂养前的行为状态是早产儿经口喂养能力变化轨迹的影响因素(均P<0.05)。结论早产儿经口喂养能力水平总体呈逐渐上升趋势,其变化轨迹具有异质性;NICU医护人员可通过早产儿经口喂养能力变化轨迹对其进行针对性评估和干预,实现精准护理。 展开更多
关键词 早产儿 新生儿重症监护病房 经口喂养能力 疾病严重程度 行为状态 潜变量增长混合模型 变化轨迹 影响因素
下载PDF
基于潜在剖面模型分析产后抑郁高危人群的影响因素
17
作者 张阳 赵娅丽 +1 位作者 拓明花 尚玉秀 《宁夏医科大学学报》 2024年第5期528-531,共4页
目的采用潜在剖面模型(latent profile model,LPM)寻找产后抑郁的最优分类,了解各潜在类别在产后总人群中的比例,探讨产后抑郁高危人群的影响因素。方法选择银川市和中卫市4所医院产科529例产妇为研究对象,采用爱丁堡产后抑郁量表(Edinb... 目的采用潜在剖面模型(latent profile model,LPM)寻找产后抑郁的最优分类,了解各潜在类别在产后总人群中的比例,探讨产后抑郁高危人群的影响因素。方法选择银川市和中卫市4所医院产科529例产妇为研究对象,采用爱丁堡产后抑郁量表(Edinburgh postnatal depression scale,EPDS)进行产后抑郁调查,LPM分析产后抑郁的潜在剖面最优分类,Logistic回归分析产后抑郁潜在类别的影响因素。结果LPM分析显示,产后抑郁分为2个潜在类别,根据其得分特征将其命名为低危型[(3.500±2.477)分,占比58.0%]和高危型[(11.550±3.189)分,占比42.0%]。多因素Logistic回归分析显示,婆媳关系(OR=2.088,95%CI:1.055~4.132,P=0.035)、产前抑郁(OR=3.587,95%CI:1.456~8.839,P=0.006)是产后抑郁高危型的危险因素,丈夫文化程度(OR=0.306,95%CI:0.108~0.864,P=0.025)、产妇年龄(OR=0.283,95%CI:0.129~0.623,P=0.002)是产后抑郁高危型的保护因素。结论2个潜在类别是产后抑郁的最优分类模型,婆媳关系、产前抑郁、丈夫文化程度和产妇年龄对产后抑郁高危型有影响,且产前抑郁与产后抑郁的关联性最强。 展开更多
关键词 产后抑郁 影响因素 潜在剖面模型
下载PDF
Two of a kind or the ratings game? Adaptive pairwise preferences and latent factor models 被引量:1
18
作者 SuhridBALAKRISHNAN SumitCHOPRA 《Frontiers of Computer Science》 SCIE EI CSCD 2012年第2期197-208,共12页
Latent factor models have become a workhorse for a large number of recommender systems. While these sys- tems are built using ratings data, which is typically assumed static, the ability to incorporate different kinds... Latent factor models have become a workhorse for a large number of recommender systems. While these sys- tems are built using ratings data, which is typically assumed static, the ability to incorporate different kinds of subsequent user feedback is an important asset. For instance, the user might want to provide additional information to the system in order to improve his personal recommendations. To this end, we examine a novel scheme for efficiently learning (or refining) user parameters from such feedback. We propose a scheme where users are presented with a sequence of pair- wise preference questions: "Do you prefer item A over B?" User parameters are updated based on their response, and subsequent questions are chosen adaptively after incorporat- ing the feedback. We operate in a Bayesian framework and the choice of questions is based on an information gain cri- terion. We validate the scheme on the Netflix movie ratings data set and a proprietary television viewership data set. A user study and automated experiments validate our findings. 展开更多
关键词 recommender systems latent factor models pairwise preferences active learning
原文传递
Realized volatility forecast of financial futures using timevarying HAR latent factor models 被引量:1
19
作者 Jiawen Luo Zhenbiao Chen Shengquan Wang 《Journal of Management Science and Engineering》 CSCD 2023年第2期214-243,共30页
We forecast realized volatilities by developing a time-varying heterogeneous autoregressive(HAR)latent factor model with dynamic model average(DMA)and dynamic model selection(DMS)approaches.The number of latent factor... We forecast realized volatilities by developing a time-varying heterogeneous autoregressive(HAR)latent factor model with dynamic model average(DMA)and dynamic model selection(DMS)approaches.The number of latent factors is determined using Chan and Grant's(2016)deviation information criteria.The predictors in our model include lagged daily,weekly,and monthly volatility variables,the corresponding volatility factors,and a speculation variable.In addition,the time-varying properties of the best-performing DMA(DMS)-HAR-2FX models,including size,inclusion probabilities,and coefficients,are examined.We find that the proposed DMA(DMS)-HAR-2FX model outperforms the competing models for both in-sample and out-of-sample forecasts.Furthermore,the speculation variable displays strong predictability for forecasting the realized volatility of financial futures in China. 展开更多
关键词 Realized volatility forecast HAR latent factor models Bayesian approaches TIME-VARYING Stock index Treasury bond futures
原文传递
融合时间因素的隐语义模型推荐算法
20
作者 马震 《电子设计工程》 2024年第8期50-54,共5页
针对传统推荐算法中存在数据稀疏和精确度不高的问题,提出一种融合时间因素的隐语义模型推荐算法,在隐语义模型中引入时间偏置项体现时间推移对用户兴趣偏好的影响,解决数据稀疏问题的同时降低时间推移造成的误差,结合基于邻域的协同过... 针对传统推荐算法中存在数据稀疏和精确度不高的问题,提出一种融合时间因素的隐语义模型推荐算法,在隐语义模型中引入时间偏置项体现时间推移对用户兴趣偏好的影响,解决数据稀疏问题的同时降低时间推移造成的误差,结合基于邻域的协同过滤模型求出目标用户推荐列表。采用Movielens1M数据集验证算法的有效性,实验证明该算法与基于用户的协同过滤算法以及基于隐语义模型的推荐算法,能有效解决数据稀疏问题,在准确率、召回率和综合F值上分别比基于用户的协同过滤算法提高1.66%、2.12%、2.04%,比基于隐语义模型的推荐算法分别提高1.38%、1.48%、1.49%,能够进一步提高推荐系统的准确性及推荐质量。 展开更多
关键词 时间因素 隐语义模型 矩阵分解 协同过滤
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部