The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking ...The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.展开更多
Owing to the good adjustability and the strong near-field enhancement,surface plasmons are widely used in optical force trap,thus the optical force trap can achieve excellent performance.Here,we use the Laguerre–Gaus...Owing to the good adjustability and the strong near-field enhancement,surface plasmons are widely used in optical force trap,thus the optical force trap can achieve excellent performance.Here,we use the Laguerre–Gaussian beam and a plasmonic gold ring to separate enantiomers by the chiral optical force.Along with the radial optical force that traps the particles,there is also a chirality-sign-sensitive lateral force arising from the optical spin angular momentum,which is caused by the interaction between optical orbit angular momentum and gold ring structure.By selecting a specific incident wavelength,the strong angular scattering and non-chiral related azimuthal optical force can be suppressed.Thus the chiral related azimuthal optical force can induce an opposite orbital rotation of the trapped particles with chirality of different sign near the gold ring.This work proposes an effective approach for catchingand separating chiral enantiomers.展开更多
A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow ...A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases.展开更多
Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS l...Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.展开更多
A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress a...A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.展开更多
In general, forward directed ice force is only considered by the designer. But experiments prove that thelateral ice force caused by the uneven contact between ice sheet and the pile also exists. The lateral ice force...In general, forward directed ice force is only considered by the designer. But experiments prove that thelateral ice force caused by the uneven contact between ice sheet and the pile also exists. The lateral ice force does notobject to normal or Gumbel distribution, and is not relevant to the forward directed one in numerical value. Preventivemeasures should be taken to avoid the damage caused by the lateral ice force to the structure in design phase.展开更多
Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series ...Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series of experiments are conducted on 1/4 JD 1 Wheel/Rail Tribology Simulation Facility. The angles of attack selected in the tests are 0°16′30″, 0°37′40″ and 1°0′0″ respectively. The lateral forces selected in the tests are 0.694 kN, 1.250 kN and 2.083 kN, respectively corresponding to the lateral forces of 25 kN, 45 kN and 75 kN measured in the field, with the aim of keeping the same ratio of L/V between laboratory and field conditions. It is found that the larger the angle of attack is, the more serious the wear of rail is. The relation of rail wear rate versus angle of attack is non linear, and the relation of rail wear rate versus lateral force is approximately linear. The influence of angle of attack is more serious than that of lateral force. For the tractive wheelset, the wear index involving linear and quadratic function terms of angle of attack has good agreement with the limited experimental data. Some conclusions are given.展开更多
This research paper aims to identify the effect of tire size on the handling characteristics of a trailer attached to a vehicle. In various stability tests, different models with different tires from the market were t...This research paper aims to identify the effect of tire size on the handling characteristics of a trailer attached to a vehicle. In various stability tests, different models with different tires from the market were tested. A successful outcome of this research would generate an efficient tire selection process and improve the handling of a trailer attached to a vehicle while maximizing fuel efficiency. In this study, different accurate tire models using the magic formula were developed in vehicle dynamics modelling and simulation software. These models were then simulated on on-road conditions to predict vehicle and trailer behaviour under different conditions within the software. Two distinct tests were conducted, the J-Turn test and the Double Lane change test. The results of these tests were used to evaluate the handling characteristics and decide on a better tire size for the trailer attached to the vehicle.展开更多
The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realis...The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation展开更多
A method for analysing the vehicle-bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densit...A method for analysing the vehicle-bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densities(PSDs) of the system responses directly from the PSD of track irregularity. The pseudo-excitation method is adopted in the proposed framework, where the vehicle is modelled as a rigid body and the bridge is modelled using the finite element method. The vertical and lateral wheel-rail pseudo-excitations are established assuming the wheel and rail have the same displacement and using the simplified Kalker creep theory, respectively. The power spectrum function of vehicle and bridge responses is calculated by history integral. Based on the dynamic responses from the deterministic and random analyses of the interaction system, and the probability density functions for three safety factors(derailment coefficient, wheel unloading rate, and lateral wheel axle force) are obtained, and the probabilities of the safety factors exceeding the given limits are calculated. The proposed method is validated by Monte Carlo simulations using a case study of a high-speed train running over a bridge with five simply supported spans and four piers.展开更多
The finite_element_displacement_perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was e...The finite_element_displacement_perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was employed to calculate the stress distributions and the stiffness of the bellows. Firstly, by applying the first_order perturbation solution (the linear solution)of the FEDPM to the bellows, the obtained results were compared with those of the general solution and the initial parameter integration solution proposed by the present authors earlier, as well as of the experiments and the FEA by others.It is shown that the FEDPM is with good precision and reliability, and as it was pointed out in (Ⅰ) the abrupt changes of the meridian curvature of bellows would not affect the use of the usual straight element. Then the nonlinear behaviors of the bellows were discussed. As expected, the nonlinear effects mainly come from the bellows ring plate,and the wider the ring plate is, the stronger the nonlinear effects are. Contrarily, the vanishing of the ring plate, like the C_shaped bellows, the nonlinear effects almost vanish. In addition, when the pure bending moments act on the bellows, each convolution has the same stress distributions calculated by the linear solution and other linear theories, but by the present nonlinear solution they vary with respect to the convolutions of the bellows. Yet for most bellows, the linear solutions are valid in practice.展开更多
In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperatu...In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.展开更多
Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines fo...Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines for BBMSEWs are limited and not applicable to numerical modeling when back-to-back walls interact with each other. The objective of this paper is to investigate, using PLAXIS code, the effects of the reduction in the distance between BBMSEW, the reinforcement length, the quality of backfill material and the connection of reinforcements in the middle, when the back-to-back walls are close. The results indicate that each of the BBMSEWs behaves independently if the width of the embankment between mechanically stabilized earth walls is greater than that of the active zone. This is in good agreement with the result of FHWA design guideline. However, the results show that the FHWA design guideline underestimates the lateral earth pressure when back-to-back walls interact with each other. Moreover, for closer BBMSEWs, FHWA design guideline strongly overestimates the maximum tensile force in the reinforcement. The investigation of the quality of backfill material shows that the minor increase in embankment cohesion can lead to significant reductions in both the lateral earth pressure and the maximum tensile force in geosynthetic. When the distance between the two earth walls is close to zero, the connection of reinforcement between back-to-back walls significantly improves the factor of safety.展开更多
In order to analyze bellows effectively and practically, the finite_element_displacement_perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending ...In order to analyze bellows effectively and practically, the finite_element_displacement_perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba_ tion that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root_mean_square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander's nonlinear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered.展开更多
The interaction between fluid and a down-pumping pitched blade turbine fixed with a flexible shaft in the stirred vessel, as a typical fluid structure interaction phenomenon, was simulated by coupling the Computationa...The interaction between fluid and a down-pumping pitched blade turbine fixed with a flexible shaft in the stirred vessel, as a typical fluid structure interaction phenomenon, was simulated by coupling the Computational Fluid Dynamics and Computational Structural Dynamics. Based on the verification of the simulated impeller torque and dimensionless shaft bending moment with experimental result, the dimensionless shaft bending moment and various loads acting on impeller(including lateral force, axial force and bending moment) were discussed in detail. By separating and extracting the fluid and structural components from those loads, the results show that the shaft bending moment mainly results from the lateral force on impeller although the axial force on impeller is much larger. The impeller mass imbalance increases the shaft bending moment and the lateral force on impeller, but has little influence on the axial force and bending moment acting on impeller. The dominant frequencies of impeller forces are macro-frequency, speed frequency and blade passing frequency, and are associated with the impeller mass imbalance.展开更多
A finite element modeling technique is employed in this paper to predict the groove wander of longitudinal tread grooved tires. In generally, groove wander is the lateral force acting on a vehicle’s wheel resulting f...A finite element modeling technique is employed in this paper to predict the groove wander of longitudinal tread grooved tires. In generally, groove wander is the lateral force acting on a vehicle’s wheel resulting from the combination of rain grooves. If the lateral force of tire is generated by groove wander, unexpected lateral motion of vehicle will happen and it makes drivers uncomfortable. This paper describes the effect of groove wander according to the shape condition of tire tread groove and highway groove using the finite element analysis based on a static loading or a steady-state rolling assumption. The road groove can be located anywhere relative to the longitudinal tread groove. Therefore, the lateral force of the tire is changing depending on the location of the groove road. The numerical results for groove wander prediction of the longitudinal tread grooved tires are compared with the subjective evaluation. It is found that the waveform for the tire with varying grooved road position has a peak-to-peak lateral force in order to estimate the rating of groove wander. The effect of the road groove width and the pitch length on the peak-to-peak lateral force of tire is discussed. It is found that the prediction of FEA-based groove wander model using finite element analysis will be useful for the reliability design of the tire tread pattern design.展开更多
The flow field of eccentric conical crevices is formed into the working process of hydraulic valves.Therefore, the valve core is readily subjected to a large lateral force which affects the dynamic response speed.Here...The flow field of eccentric conical crevices is formed into the working process of hydraulic valves.Therefore, the valve core is readily subjected to a large lateral force which affects the dynamic response speed.Here, a new type of cartridge valve core structure is proposed to solve this problem. The numerical simulationmethod is applied to analyze the flow characteristics of clearance flow field on velocity distribution, pressuredistribution, valve core motion speed, and leakage. The results using computational fluid dynamics (CFD) showthat the guide groove is set on the surface of the cartridge valve core, increasing the connecting length of thevalve core, forming a uniform radial pressure distribution and velocity distribution, effectively reducing the lateralforce, and at the same time ensuring that the leak is not too big. These findings provide theoretical guidance anda basis for optimizing cartridge valve to reduce the occurrence of jamming and improve the response frequency.展开更多
Ship berthing is a specific maneuver operation. The flow around a berthing ship and the forces acting on the hull are quite different from those for a ship in normal navigation. By solving the unsteady Reynolds-Averag...Ship berthing is a specific maneuver operation. The flow around a berthing ship and the forces acting on the hull are quite different from those for a ship in normal navigation. By solving the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations, the transient flow field around a ship undergoing unsteady lateral motion is simulated and the varying lateral hydrodynamic force acting on the hull is evaluated in this article. The numerical results obtained with different turbulence models are analyzed and compared with experimental results and other numerical results published in literature, and a turbulence model more suitable for simulation of the viscous flow around a ship undergoing unsteady berthing is determined.展开更多
In late July 2018, a compound drought and heat event(CDHE) occurred in the middle of the Yangtze River basin(MYRB) and caused great damage to the national economy. The CDHE over the MYRB has been documented to be link...In late July 2018, a compound drought and heat event(CDHE) occurred in the middle of the Yangtze River basin(MYRB) and caused great damage to the national economy. The CDHE over the MYRB has been documented to be linked with intraseasonal oscillations(ISOs) from different regions. However, specific roles of different ISOs on the development of the CDHE cannot be separated in the observational analysis. By using partial lateral forcing experiments driven by ISO in the Weather Research and Forecasting(WRF) model, we found that the midlatitude ISO generated by a westerly wave train in the upper troposphere played an important role in this heatwave and drought event in the northern MYRB, causing a regional average temperature rise of 1.65°C and intensification of drought over23.49% of the MYRB area. On the other hand, the ISO associated with the Pacific-Japan(PJ)-like teleconnection wave train in the lower troposphere induced a more pronounced impact on the event, causing an average temperature rise of 2.44°C, intensifying drought over 29.62% of the MYRB area. The MYRB was mainly affected by northward warm advection driven by the westward extension of the western North Pacific subtropical high in the early period of the CDHE development. In the late period, because of the establishment of a deep positive geopotential height field through the troposphere leading to intensive local subsidence, there was a remarkable temperature rise and moisture decrease in the MYRB. The results will facilitate a better understanding of the occurrence of CDHE and provide empirical precursory signals for subseasonal forecast of CDHE.展开更多
A structured transdisciplinary method for the experimental determination of friction in the nanometric domain is proposed in this paper.The dependence of nanoscale friction on multiple process parameters on these scal...A structured transdisciplinary method for the experimental determination of friction in the nanometric domain is proposed in this paper.The dependence of nanoscale friction on multiple process parameters on these scales,which comprise normal forces,sliding velocities,and temperature,was studied via the lateral force microscopy approach.The procedure used to characterize the stiffness of the probes used,and especially the influence of adhesion on the obtained results,is thoroughly described.The analyzed thin films were obtained by using either atomic layer or pulsed laser deposition.The developed methodology,based on elaborated design of experiments algorithms,was successfully implemented to concurrently characterize the dependence of nanoscale friction in the multidimensional space defined by the considered process parameters.This enables the establishment of a novel methodology that extends the current state-of-the-art of nanotribological studies,as it allows not only the gathering of experimental data,but also the ability to do so systematically and concurrently for several influencing variables at once.This,in turn,creates the basis for determining generalizing correlations of the value of nanoscale friction in any multidimensional experimental space.These developments create the preconditions to eventually extend the available macro-and mesoscale friction models to a true multiscale model that will considerably improve the design,modelling and production of MEMS devices,as well as all precision positioning systems aimed at micro-and nanometric accuracy and precision.展开更多
文摘The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.
基金Project supported by the National Natural Science Foundation of China (Grant No.12074054)the Fundamental Research Funds for the Central Universities,China (Grant No.DUT21LK06)。
文摘Owing to the good adjustability and the strong near-field enhancement,surface plasmons are widely used in optical force trap,thus the optical force trap can achieve excellent performance.Here,we use the Laguerre–Gaussian beam and a plasmonic gold ring to separate enantiomers by the chiral optical force.Along with the radial optical force that traps the particles,there is also a chirality-sign-sensitive lateral force arising from the optical spin angular momentum,which is caused by the interaction between optical orbit angular momentum and gold ring structure.By selecting a specific incident wavelength,the strong angular scattering and non-chiral related azimuthal optical force can be suppressed.Thus the chiral related azimuthal optical force can induce an opposite orbital rotation of the trapped particles with chirality of different sign near the gold ring.This work proposes an effective approach for catchingand separating chiral enantiomers.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51379108 and 51609125)the Open Foundation of Engineering Research Center of Eco-environment in Three Gorges Reservoir Region,Ministry of Education(Grant No.2015KF-03)the University Scientific Research and Application Project of Yichang(Grant No.A16-302-a13)
文摘A control scheme named the variable-lateral-force cavitator, which is focused on the control of lift force, drag force and lateral forces for underwater supercavity vehicles was proposed, and the supercavitating flow around the cavitator was investigated numerically using the mixture multiphase flow model. It is verified that the forces of pitching, yawing, drag and lift, as well as the supercavity size of the underwater vehicle can be effectively regulated through the movements of the control element of the variable-lateral-force cavitator in the radial and circumferential directions. In addition, if the control element on either side protrudes to a height of 5% of the diameter of the front cavitator, an amount of forces of pitching and yawing equivalent to 30% of the drag force will be produced, and the supercavity section appears concave inwards simultaneously. It is also found that both the drag force and lift force of the variable-lateral-force cavitator decline as the angle of attack increases.
基金the National Natural Science Foundation of China(Grant No.11572232)。
文摘Magnetic stiffness determines the stability of a high-temperature superconductor(HTS)magnetic levitation system.The quantitative properties of the physical and geometrical parameters that affect the stiffness of HTS levitation systems should be identified for improving the stiffness by some effective methods.The magnetic stiffness is directly related to the first-order derivative of the magnetic force with respect to the corresponding displacement,which indicates that the effects of the parameters on the stiffness should be different from the relationships between the forces and the same parameters.In this paper,we study the influences of some physical and geometrical parameters,including the strength of the external magnetic field(B0)produced by a rectangular permanent magnet(PM),critical current density(Jc),the PM-to-HTS area ratio(α),and thickness ratio(β),on the lateral stiffness by using a numerical approach under zero-field cooling(ZFC)and field cooling(FC)conditions.In the first and second passes of the PM,the lateral stiffness at most of lateral positions essentially increases with B0 increasing and decreases withβincreasing in ZFC and FC.The largest lateral stiffness at every lateral position is almost produced by the minimum value of Jc,which is obviously different from the lateral force–Jc relation.Theα-dependent lateral stiffness changes with some parameters,which include the cooling conditions of the bulk HTS,lateral displacement,and movement history of the PM.These findings can provide some suggestions for improving the lateral stiffness of the HTS levitation system.
文摘A bending beam,subjected to state of plane stress,was chosen to investigate.The determination of the neutral surface of the structure was made,and the calculating formulas of neutral axis,normal stress,shear stress and displacement were derived.It is concluded that, for the elastic bending beam with different tension-compression modulus in the condition of complex stress, the position of the neutral axis is not related with the shear stress, and the analytical solution can be derived by normal stress used as a criterion, improving the multiple cyclic method which determines the position of neutral point by the principal stress. Meanwhile, a comparison is made between the results of the analytical solution and those calculated from the classic mechanics theory, assuming the tension modulus is equal to the compression modulus, and those from the finite element method (FEM) numerical solution. The comparison shows that the analytical solution considers well the effects caused by the condition of different tension and compression modulus. Finally, a calculation correction of the structure with different modulus is proposed to optimize the structure.
文摘In general, forward directed ice force is only considered by the designer. But experiments prove that thelateral ice force caused by the uneven contact between ice sheet and the pile also exists. The lateral ice force does notobject to normal or Gumbel distribution, and is not relevant to the forward directed one in numerical value. Preventivemeasures should be taken to avoid the damage caused by the lateral ice force to the structure in design phase.
文摘Angle of attack and lateral force are two important parameters influencing wheel rail wear. This paper deals with the question of influences of the angle of attack and the lateral force on the wear of rail. A series of experiments are conducted on 1/4 JD 1 Wheel/Rail Tribology Simulation Facility. The angles of attack selected in the tests are 0°16′30″, 0°37′40″ and 1°0′0″ respectively. The lateral forces selected in the tests are 0.694 kN, 1.250 kN and 2.083 kN, respectively corresponding to the lateral forces of 25 kN, 45 kN and 75 kN measured in the field, with the aim of keeping the same ratio of L/V between laboratory and field conditions. It is found that the larger the angle of attack is, the more serious the wear of rail is. The relation of rail wear rate versus angle of attack is non linear, and the relation of rail wear rate versus lateral force is approximately linear. The influence of angle of attack is more serious than that of lateral force. For the tractive wheelset, the wear index involving linear and quadratic function terms of angle of attack has good agreement with the limited experimental data. Some conclusions are given.
文摘This research paper aims to identify the effect of tire size on the handling characteristics of a trailer attached to a vehicle. In various stability tests, different models with different tires from the market were tested. A successful outcome of this research would generate an efficient tire selection process and improve the handling of a trailer attached to a vehicle while maximizing fuel efficiency. In this study, different accurate tire models using the magic formula were developed in vehicle dynamics modelling and simulation software. These models were then simulated on on-road conditions to predict vehicle and trailer behaviour under different conditions within the software. Two distinct tests were conducted, the J-Turn test and the Double Lane change test. The results of these tests were used to evaluate the handling characteristics and decide on a better tire size for the trailer attached to the vehicle.
基金Supported by National Natural Science Foundation of China (41176074, 51209048,51379043,51409063) High tech ship research project of Ministry of industry and technology (G014613002) The support plan for youth backbone teachers of Harbin Engineering University (HEUCFQ1408)
文摘The unsteady performance of drag and double reverse propeller podded propulsors in open water was numerically simulated using a computational fluid dynamics (CFD) method. A moving mesh method was used to more realistically simulate propulsor working conditions, and the thrust, torque, and lateral force coefficients of both propulsors were compared and analyzed. Forces acting on different parts of the propulsors along with the flow field distribution of steady and unsteady results at different advance coefficients were compared. Moreover, the change of the lateral force and the difference between the abovementioned two methods were mainly analyzed. It was shown that the thrust and torque results of both methods were similar, with the lateral force results having the highest deviation
文摘A method for analysing the vehicle-bridge interaction system with enhanced objectivity is proposed in the paper, which considers the time-variant and random characteristics and allows finding the power spectral densities(PSDs) of the system responses directly from the PSD of track irregularity. The pseudo-excitation method is adopted in the proposed framework, where the vehicle is modelled as a rigid body and the bridge is modelled using the finite element method. The vertical and lateral wheel-rail pseudo-excitations are established assuming the wheel and rail have the same displacement and using the simplified Kalker creep theory, respectively. The power spectrum function of vehicle and bridge responses is calculated by history integral. Based on the dynamic responses from the deterministic and random analyses of the interaction system, and the probability density functions for three safety factors(derailment coefficient, wheel unloading rate, and lateral wheel axle force) are obtained, and the probabilities of the safety factors exceeding the given limits are calculated. The proposed method is validated by Monte Carlo simulations using a case study of a high-speed train running over a bridge with five simply supported spans and four piers.
文摘The finite_element_displacement_perturbation method (FEDPM)for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes (Ⅰ) was employed to calculate the stress distributions and the stiffness of the bellows. Firstly, by applying the first_order perturbation solution (the linear solution)of the FEDPM to the bellows, the obtained results were compared with those of the general solution and the initial parameter integration solution proposed by the present authors earlier, as well as of the experiments and the FEA by others.It is shown that the FEDPM is with good precision and reliability, and as it was pointed out in (Ⅰ) the abrupt changes of the meridian curvature of bellows would not affect the use of the usual straight element. Then the nonlinear behaviors of the bellows were discussed. As expected, the nonlinear effects mainly come from the bellows ring plate,and the wider the ring plate is, the stronger the nonlinear effects are. Contrarily, the vanishing of the ring plate, like the C_shaped bellows, the nonlinear effects almost vanish. In addition, when the pure bending moments act on the bellows, each convolution has the same stress distributions calculated by the linear solution and other linear theories, but by the present nonlinear solution they vary with respect to the convolutions of the bellows. Yet for most bellows, the linear solutions are valid in practice.
基金Supported by Science & Engineering Research Council of Singapore (052 118 0052)
文摘In this paper, the effects of packaging material and structure of fiber Bragg grating sensor performance are investigated. The effects of thermal expansion coefficient of different embedding materials on the temperature sensitivities of the FBG sensors are studied both theoretically and experimentally with good agreement, which provides a means for selection of FBG packaging material to achieve desired temperature sensitivity. We also demonstrate a 4-point bending structured FBG lateral force sensor that measures up to 242N force with well-preserved reflection spectrum, whereas for 3-point bending structure, multiple-peaks start to occur when applied force reaches 72N.
文摘Back-to-back mechanically stabilized earth walls (BBMSEWs) are encountered in bridge approaches, ramp ways, rockfall protection systems, earth dams, levees and noise barriers. However, available design guidelines for BBMSEWs are limited and not applicable to numerical modeling when back-to-back walls interact with each other. The objective of this paper is to investigate, using PLAXIS code, the effects of the reduction in the distance between BBMSEW, the reinforcement length, the quality of backfill material and the connection of reinforcements in the middle, when the back-to-back walls are close. The results indicate that each of the BBMSEWs behaves independently if the width of the embankment between mechanically stabilized earth walls is greater than that of the active zone. This is in good agreement with the result of FHWA design guideline. However, the results show that the FHWA design guideline underestimates the lateral earth pressure when back-to-back walls interact with each other. Moreover, for closer BBMSEWs, FHWA design guideline strongly overestimates the maximum tensile force in the reinforcement. The investigation of the quality of backfill material shows that the minor increase in embankment cohesion can lead to significant reductions in both the lateral earth pressure and the maximum tensile force in geosynthetic. When the distance between the two earth walls is close to zero, the connection of reinforcement between back-to-back walls significantly improves the factor of safety.
文摘In order to analyze bellows effectively and practically, the finite_element_displacement_perturbation method (FEDPM) is proposed for the geometric nonlinear behaviors of shells of revolution subjected to pure bending moments or lateral forces in one of their meridional planes. The formulations are mainly based upon the idea of perturba_ tion that the nodal displacement vector and the nodal force vector of each finite element are expanded by taking root_mean_square value of circumferential strains of the shells as a perturbation parameter. The load steps and the iteration times are not as arbitrary and unpredictable as in usual nonlinear analysis. Instead, there are certain relations between the load steps and the displacement increments, and no need of iteration for each load step. Besides, in the formulations, the shell is idealized into a series of conical frusta for the convenience of practice, Sander's nonlinear geometric equations of moderate small rotation are used, and the shell made of more than one material ply is also considered.
基金Supported by the National Natural Science Foundation of China (21376016).
文摘The interaction between fluid and a down-pumping pitched blade turbine fixed with a flexible shaft in the stirred vessel, as a typical fluid structure interaction phenomenon, was simulated by coupling the Computational Fluid Dynamics and Computational Structural Dynamics. Based on the verification of the simulated impeller torque and dimensionless shaft bending moment with experimental result, the dimensionless shaft bending moment and various loads acting on impeller(including lateral force, axial force and bending moment) were discussed in detail. By separating and extracting the fluid and structural components from those loads, the results show that the shaft bending moment mainly results from the lateral force on impeller although the axial force on impeller is much larger. The impeller mass imbalance increases the shaft bending moment and the lateral force on impeller, but has little influence on the axial force and bending moment acting on impeller. The dominant frequencies of impeller forces are macro-frequency, speed frequency and blade passing frequency, and are associated with the impeller mass imbalance.
文摘A finite element modeling technique is employed in this paper to predict the groove wander of longitudinal tread grooved tires. In generally, groove wander is the lateral force acting on a vehicle’s wheel resulting from the combination of rain grooves. If the lateral force of tire is generated by groove wander, unexpected lateral motion of vehicle will happen and it makes drivers uncomfortable. This paper describes the effect of groove wander according to the shape condition of tire tread groove and highway groove using the finite element analysis based on a static loading or a steady-state rolling assumption. The road groove can be located anywhere relative to the longitudinal tread groove. Therefore, the lateral force of the tire is changing depending on the location of the groove road. The numerical results for groove wander prediction of the longitudinal tread grooved tires are compared with the subjective evaluation. It is found that the waveform for the tire with varying grooved road position has a peak-to-peak lateral force in order to estimate the rating of groove wander. The effect of the road groove width and the pitch length on the peak-to-peak lateral force of tire is discussed. It is found that the prediction of FEA-based groove wander model using finite element analysis will be useful for the reliability design of the tire tread pattern design.
基金the Cultivate Scientific Research Excellence Programs of Higher Education Institutions in Shanxi(No.2020KJ019)the Key R&D Projects of Shanxi Province(No.201903D121041)+1 种基金the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi(No.20191044)the“1331 Project”of Shanxi Province(No.2020-44)。
文摘The flow field of eccentric conical crevices is formed into the working process of hydraulic valves.Therefore, the valve core is readily subjected to a large lateral force which affects the dynamic response speed.Here, a new type of cartridge valve core structure is proposed to solve this problem. The numerical simulationmethod is applied to analyze the flow characteristics of clearance flow field on velocity distribution, pressuredistribution, valve core motion speed, and leakage. The results using computational fluid dynamics (CFD) showthat the guide groove is set on the surface of the cartridge valve core, increasing the connecting length of thevalve core, forming a uniform radial pressure distribution and velocity distribution, effectively reducing the lateralforce, and at the same time ensuring that the leak is not too big. These findings provide theoretical guidance anda basis for optimizing cartridge valve to reduce the occurrence of jamming and improve the response frequency.
基金supported by the National Natural Science Foundation of China (Grant Nos. 10572094, 50779033)the Special Research Fund for the Doctoral Program of Higher Education in China (Grant No. 20050248037)
文摘Ship berthing is a specific maneuver operation. The flow around a berthing ship and the forces acting on the hull are quite different from those for a ship in normal navigation. By solving the unsteady Reynolds-Averaged Navier-Stokes (RANS) equations, the transient flow field around a ship undergoing unsteady lateral motion is simulated and the varying lateral hydrodynamic force acting on the hull is evaluated in this article. The numerical results obtained with different turbulence models are analyzed and compared with experimental results and other numerical results published in literature, and a turbulence model more suitable for simulation of the viscous flow around a ship undergoing unsteady berthing is determined.
基金Supported by the National Natural Science Foundation of China(41875111 and 41975073)Special Program for Innovation and Development of China Meteorological Administration(CXFZ2022J031).
文摘In late July 2018, a compound drought and heat event(CDHE) occurred in the middle of the Yangtze River basin(MYRB) and caused great damage to the national economy. The CDHE over the MYRB has been documented to be linked with intraseasonal oscillations(ISOs) from different regions. However, specific roles of different ISOs on the development of the CDHE cannot be separated in the observational analysis. By using partial lateral forcing experiments driven by ISO in the Weather Research and Forecasting(WRF) model, we found that the midlatitude ISO generated by a westerly wave train in the upper troposphere played an important role in this heatwave and drought event in the northern MYRB, causing a regional average temperature rise of 1.65°C and intensification of drought over23.49% of the MYRB area. On the other hand, the ISO associated with the Pacific-Japan(PJ)-like teleconnection wave train in the lower troposphere induced a more pronounced impact on the event, causing an average temperature rise of 2.44°C, intensifying drought over 29.62% of the MYRB area. The MYRB was mainly affected by northward warm advection driven by the westward extension of the western North Pacific subtropical high in the early period of the CDHE development. In the late period, because of the establishment of a deep positive geopotential height field through the troposphere leading to intensive local subsidence, there was a remarkable temperature rise and moisture decrease in the MYRB. The results will facilitate a better understanding of the occurrence of CDHE and provide empirical precursory signals for subseasonal forecast of CDHE.
基金The work described in this paper is enabled by using the equipment funded via the ERDF project RC.2.2.06-0001“Research Infrastructure for Campusbased Laboratories at the University of Rijeka-RISK”,as well as via the support of the University of Rijeka grants uniri-tehnic-18-32.“Advanced mechatronics devices for smart technological solutions”and 4581“Measuring,modelling and compensating friction in high-precision devices:From macro-to nanometric scale”.The work was partially supported also by the Croatian Science Foundation project IP-11-2013-2753“Laser Cold Plasma Interaction and Diagnostics”.The Go Sum Dsoftware is provided by AIMdyn,Inc.
文摘A structured transdisciplinary method for the experimental determination of friction in the nanometric domain is proposed in this paper.The dependence of nanoscale friction on multiple process parameters on these scales,which comprise normal forces,sliding velocities,and temperature,was studied via the lateral force microscopy approach.The procedure used to characterize the stiffness of the probes used,and especially the influence of adhesion on the obtained results,is thoroughly described.The analyzed thin films were obtained by using either atomic layer or pulsed laser deposition.The developed methodology,based on elaborated design of experiments algorithms,was successfully implemented to concurrently characterize the dependence of nanoscale friction in the multidimensional space defined by the considered process parameters.This enables the establishment of a novel methodology that extends the current state-of-the-art of nanotribological studies,as it allows not only the gathering of experimental data,but also the ability to do so systematically and concurrently for several influencing variables at once.This,in turn,creates the basis for determining generalizing correlations of the value of nanoscale friction in any multidimensional experimental space.These developments create the preconditions to eventually extend the available macro-and mesoscale friction models to a true multiscale model that will considerably improve the design,modelling and production of MEMS devices,as well as all precision positioning systems aimed at micro-and nanometric accuracy and precision.