This paper presents a proposed concept of a spiraled roadside curve for determining the required lateral clearance that satisfies sight distance needs on a roadway reverse hori- zontal curve. The spiraled roadside cur...This paper presents a proposed concept of a spiraled roadside curve for determining the required lateral clearance that satisfies sight distance needs on a roadway reverse hori- zontal curve. The spiraled roadside curve was evaluated in the context of roadway plan view. The characteristics of its corresponding lateral offsets were analyzed. It was found that the ratio of the radii for the two reversing circular curves was the major factor that impacted the ratio of the required offset to the maximum offset of a circular curve. A single design chart and a design table were developed. The required offsets at alignment reversing sections were far less than those recommended by the American Association of State Highways and Transportation Officials (AASHTO) and those required at the approach and departure sections of a roadway simple curve. At the common point of the two reversing circular curves having a radius ratio R2/R1 ranging from 0.5 to 2, the required offsets were approximately 34%-66% of the maximum offsets recommended by AASHTO and approximately 41%-79% of those required in the case of a simple curve. The engi- neering implications of the proposed spiraled roadside curve are multifold: (a) it can be designed in a way similar to traditional roadway design, (b) it avoided the application of numerous design charts and extensive computations, (c) it can be easily staked on the field, (d) it not only greatly improved the A_ASHTO approximate approach, but also improved roadway design consistency.展开更多
The objective of this research was to determine what influence geometric design elements of roadway may have on driver behavior during the overtaking maneuver. This was part of a larger research effort to eliminate cr...The objective of this research was to determine what influence geometric design elements of roadway may have on driver behavior during the overtaking maneuver. This was part of a larger research effort to eliminate crashes (and the resulting fatalities and injuries) between bicycles and motorized vehicles. The data collection process produced 1151 observations with approximately 40 different independent variables for each data point through direct observation, sensor logging, or derivation from other independent variables. Prior research by the authors developed a means to collect real-time field data through the use of a bicycle-mounted data collection system. The collected data was then used to model lateral clearance distance be- tween vehicles and bicycles. The developed model confirmed field observations that the lateral clearance distance provided by drivers changes with vehicle speed and oncoming vehicle presence. These observations were presented by the authors previously. The model shows that driver behavior can be adjusted by the inclusion, or exclusion, of geometric elements. Evaluating roadways (or roadway designs) based on this model will enable stakeholders to identify those roadway segments where a paved shoulder would prove an effective safety countermeasure. This research will also enable roadway designers to better identify during the design phase those roadway segments that should be constructed with a paved shoulder.展开更多
基金supported by a Discovery Grant 1-51-52657 (131033) Discovery-Accelerator Grant 1-51-52687(131871) from the Natural Sciences and Engineering Research Council of Canada
文摘This paper presents a proposed concept of a spiraled roadside curve for determining the required lateral clearance that satisfies sight distance needs on a roadway reverse hori- zontal curve. The spiraled roadside curve was evaluated in the context of roadway plan view. The characteristics of its corresponding lateral offsets were analyzed. It was found that the ratio of the radii for the two reversing circular curves was the major factor that impacted the ratio of the required offset to the maximum offset of a circular curve. A single design chart and a design table were developed. The required offsets at alignment reversing sections were far less than those recommended by the American Association of State Highways and Transportation Officials (AASHTO) and those required at the approach and departure sections of a roadway simple curve. At the common point of the two reversing circular curves having a radius ratio R2/R1 ranging from 0.5 to 2, the required offsets were approximately 34%-66% of the maximum offsets recommended by AASHTO and approximately 41%-79% of those required in the case of a simple curve. The engi- neering implications of the proposed spiraled roadside curve are multifold: (a) it can be designed in a way similar to traditional roadway design, (b) it avoided the application of numerous design charts and extensive computations, (c) it can be easily staked on the field, (d) it not only greatly improved the A_ASHTO approximate approach, but also improved roadway design consistency.
基金support of this study from the Traffic Operations and Safety(TOPS) Laboratory at the University of Wisconsin-Madison
文摘The objective of this research was to determine what influence geometric design elements of roadway may have on driver behavior during the overtaking maneuver. This was part of a larger research effort to eliminate crashes (and the resulting fatalities and injuries) between bicycles and motorized vehicles. The data collection process produced 1151 observations with approximately 40 different independent variables for each data point through direct observation, sensor logging, or derivation from other independent variables. Prior research by the authors developed a means to collect real-time field data through the use of a bicycle-mounted data collection system. The collected data was then used to model lateral clearance distance be- tween vehicles and bicycles. The developed model confirmed field observations that the lateral clearance distance provided by drivers changes with vehicle speed and oncoming vehicle presence. These observations were presented by the authors previously. The model shows that driver behavior can be adjusted by the inclusion, or exclusion, of geometric elements. Evaluating roadways (or roadway designs) based on this model will enable stakeholders to identify those roadway segments where a paved shoulder would prove an effective safety countermeasure. This research will also enable roadway designers to better identify during the design phase those roadway segments that should be constructed with a paved shoulder.