Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more devel...Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls.展开更多
Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading form...Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.展开更多
The lateral response of combined pile-raft foundations(CPRFs)adjacent to tunnel excavation is a challenging problem owing to the complexity of the pile-raft connections.In current engineering practices,the impact of t...The lateral response of combined pile-raft foundations(CPRFs)adjacent to tunnel excavation is a challenging problem owing to the complexity of the pile-raft connections.In current engineering practices,the impact of these connections on the lateral performance of CPRFs is frequently overlooked,despite their importance.To address this issue,this study conducted three-dimensional finite element analyses to evaluate the contribution of pile-raft connections to the tunnelling-induced lateral performance of CPRFs in saturated clay.In the analysis,both passive and active loading at the pile head could be considered by varying the tunnel depth.Several parameter studies,such as relative pile-raft modulus,pile embedded modulus,pile embedded depths,and pile shaft skin friction,were conducted to determine the optimal design parameters for CPRFs.The results indicate that pile-raft connections significantly affect the tunnellinginduced deflections and bending moments of pile groups.Inspired by the results,a simplified design method,the pile-raft connection coefficient Kc was proposed.Additionally,the pile-head restraint percentage was established to make a relationship with the pile-raft connection coefficient in order to assess the pile-raft connection and guide the pile-raft design.In this paper,the recommended range value of Kc is 10–200 and the range value of pile-head restraint percentage is 24%–42%.展开更多
基金This work was supported by the National Natural Science Foundation of China(Nos.51878354&51308301)the Natural Science Foundation of Jiangsu Province(Nos.BK20181402&BK20130978)333 Talent High-Level Project of Jiangsu Province,and Qinglan Project of Jiangsu Higher Education Institutions.Any research results expressed in this paper are those of the writer(s)and do not necessarily reflect the views of the foundations.
文摘Wood is a green material in line with the sustainable development strategy.From the excellent performance of engineering wood products,modern wood structures represented by light wood structures have gained more development opportunities.As an indispensable part of light wood structure systems,the wood-frame shear wall plays a vital role in the bearing capacity and earthquake resistance of light wood structure systems.This paper is focused on a review of the lateral performance of wood-frame shear walls and classifies the influencing factors in relevant experimental research into three categories,including internal factors such as shear wall structure,external factors such as test scheme,and other factors of material production and test process.Finally,the research prospects in this field were introduced based on the summary of the research status.This work can be a reference for further research on the lateral performance of wood-frame shear walls.
基金Project supported by Scholarship Award for Excellent Doctoral Student granted by Ministry of Education,ChinaProject(2012QNZT029) supported by the Fundamental Research Funds for the Central Universities of China+1 种基金Project(CX2010B122) supported by Hunan Provincial Innovation Foundation for Postgraduate,ChinaProject(2010ybfz088) supported by the Foundation of Excellent Doctoral Dissertation of Central South University,China
文摘Based on 3D, steady N-S equations and k-e turbulence model, Fluent was employed to do numerical simulation for lateral aerodynamic performance of 6-axis X2K double-deck container trains with two different loading forms, and speed limits of the freight trains were studied. The result indicates that under wind environment: 1) As for vehicles without and with cross-loaded structure, aero-pressure on the former is bigger, but air velocity around the latter is larger; 2) When sideslip angle θ=0°, the airflow is symmetry about train vertical axis; when θ〉0°, the airflow is detached at the top of vehicles, and the air velocity increases above the separated line but decreases below it; 3) With θ increasing, the lateral force on the mid vehicle firstly increases but decreases as θ=75°; 4) When the 6-axis X2K fiat car loads empty boxes of a 40 ft and a 48 ft at 120 km/h, the overturning wind speed is 25.19 m/s, and the train should be stopped under the 12th grade wind speed.
基金funded by the National Natural Science Foundation of China(Grant No.51878157,52308341)the Natural Science Foundation of Jiangsu Province(Grant No.BK20181282)the China Scholarship Council(CSC202106090083).
文摘The lateral response of combined pile-raft foundations(CPRFs)adjacent to tunnel excavation is a challenging problem owing to the complexity of the pile-raft connections.In current engineering practices,the impact of these connections on the lateral performance of CPRFs is frequently overlooked,despite their importance.To address this issue,this study conducted three-dimensional finite element analyses to evaluate the contribution of pile-raft connections to the tunnelling-induced lateral performance of CPRFs in saturated clay.In the analysis,both passive and active loading at the pile head could be considered by varying the tunnel depth.Several parameter studies,such as relative pile-raft modulus,pile embedded modulus,pile embedded depths,and pile shaft skin friction,were conducted to determine the optimal design parameters for CPRFs.The results indicate that pile-raft connections significantly affect the tunnellinginduced deflections and bending moments of pile groups.Inspired by the results,a simplified design method,the pile-raft connection coefficient Kc was proposed.Additionally,the pile-head restraint percentage was established to make a relationship with the pile-raft connection coefficient in order to assess the pile-raft connection and guide the pile-raft design.In this paper,the recommended range value of Kc is 10–200 and the range value of pile-head restraint percentage is 24%–42%.