The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse br...The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse breaking up into multiple pulses rather than a single is solved. Applying perturbative analysis, we show that the dynamics of the nonlinear transmission line (NLTL) is reduced to expanded Korteweg-de Vries (KdV) equation. Moreover, numerical integration of nonlinear differential and difference equations that result from the mathematical analysis of the line is discussed. As results, NLTL can simultaneously sharpen both leading and trailing of pulse edges and one could obtain a rising and sharpening step pulse.展开更多
In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantit...In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions^diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which mod- els the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection-diffusion system (which includes the developed model for brain tumor targeted drug delivery system).展开更多
文摘The characteristics of N-type accumulation-mode MOS (NMOS) varactors line periodically loaded with resonant tunneling diodes (RTDs) are used for soliton-like pulses generation and shaping. The problem of wide pulse breaking up into multiple pulses rather than a single is solved. Applying perturbative analysis, we show that the dynamics of the nonlinear transmission line (NLTL) is reduced to expanded Korteweg-de Vries (KdV) equation. Moreover, numerical integration of nonlinear differential and difference equations that result from the mathematical analysis of the line is discussed. As results, NLTL can simultaneously sharpen both leading and trailing of pulse edges and one could obtain a rising and sharpening step pulse.
文摘In this paper, we present a mathematical model that describes tumor-normal cells inter- action dynamics focusing on role of drugs in treatment of brain tumors. The goal is to predict distribution and necessary quantity of drugs delivered in drug-therapy by using optimal control framework. The model describes interactions of tumor and normal cells using a system of reactions^diffusion equations involving the drug concentration, tumor cells and normal tissues. The control estimates simultaneously blood perfusion rate, reabsorption rate of drug and drug dosage administered, which affect the effects of brain tumor chemotherapy. First, we develop mathematical framework which mod- els the competition between tumor and normal cells under chemotherapy constraints. Then, existence, uniqueness and regularity of solution of state equations are proved as well as stability results. Afterwards, optimal control problems are formulated in order to minimize the drug delivery and tumor cell burden in different situations. We show existence and uniqueness of optimal solution, and we derive necessary conditions for optimality. Finally, to solve numerically optimal control and optimization problems, we propose and investigate an adjoint multiple-relaxation-time lattice Boltzmann method for a general nonlinear coupled anisotropic convection-diffusion system (which includes the developed model for brain tumor targeted drug delivery system).