Produced in power plants, electrical energy is transported to places of consumption via the electricity network. At the heart of this network are the supports that allow electricity to be efficiently transported over ...Produced in power plants, electrical energy is transported to places of consumption via the electricity network. At the heart of this network are the supports that allow electricity to be efficiently transported over long distances, guaranteeing the security and supply of energy to the various centers of use. In the construction of a line, supports occupy an important part in terms of safety and construction cost. It is therefore essential to optimize their use to reduce the cost of transmission lines. This work addresses this problem, which focuses on the optimal utilization of X-lattice towers in the construction of overhead power lines. The challenge is to reconcile the search for optimal cost and respect for the design, resistance and service constraints of the structure. To do this, a parameter having a strong correlation with the weight, foundation and construction cost of the X-lattice tower for 161 kV lines is determined as an important cost variable. This parameter is the wheelbase of the towers. The junction point between the structure and the foundations is obtained by measuring the forces at the base of the tower following the lowering of the loads. These efforts make it possible to size foundations which are of the inverted or isolated sole type. The results obtained reveal that from 8 meters in width, the wheelbase gradually changes until the optimum is obtained at 6.29 meters. With this wheelbase, the production cost is optimal. It clearly emerges from this study that the construction of lattice pylons with a wheelbase of approximately 6.29 meters makes it possible to optimize the cost of construction of 161 kV lines in the Republic of Benin.展开更多
The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy...The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of power performance by wind turbines. Annex G of this standard provides a methodology for the appropriate arrangement of instruments on the meteorological mast to ensure accurate measurement. For cup anemometers it provides recommendations about their location relative to the mast so that the effect of mast and boom interference on their output may be minimised. These recommendations are given for both tubular masts and lattice masts. This paper compares the flow distortion predicted by the IEC standard and the results of a 3D CFD (computational fluid dynamics) simulation of a triangular lattice mast. Based on the results of wind tunnel and CFD simulation it was found that the flow distortion surrounding the lattice mast was overpredicted by the method suggested in appendix G oflEC61400-12-1. Using the CFD data it was possible to determine, for a range of flow directions and mast heights, the distance from the mast that anemometers would need to be in order to be outside the flow distortion field.展开更多
An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are ...An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are the most significant factors for wind load computations.Wind tunnel tests and computational fluid dynamics(CFD)are the most appropriate methods to estimate these parameters.While wind tunnel tests are generally preferred in practice,they require dedicated facilities and personnel,and can be expensive if multiple configurations of tower panels and antennas need to be tested under various wind directions(e.g.,fragility curve development for system resilience analysis).This paper provides a simple,robust,and easily accessible CFD protocol with widespread applicability,offering a practical solution in situations where wind tunnel testing is not feasible,such as complex tower configurations or cases where the cost of running experiments for all the tower-antennas configurations is prohibitively high.Different turbulence models,structural and fluid boundary conditions and mesh types are tested to provide a streamlined CFD modeling strategy that shows good convergence and balances accuracy,computational time,and robustness.The protocol is calibrated and validated with experimental studies available in the literature.To demonstrate the capabilities of the protocol,three lattice tower panels and antennas with different configurations are analyzed as examples.The protocol successfully estimates the drag and lateral wind loads and their coefficients under different wind directions.Noticeable differences are observed between the esti-mated wind loads with this protocol and those computed by a simple linear superposition used in most practical applications,indicating the importance of tower-antenna interaction.Also,as expected,the wind loads recom-mended by design codes overestimate the simulated results.More importantly,the telecommunication design codes inadequately identify the most favorable wind directions that are associated with the lowest wind loads,while the results of the proposed protocol align with observations from experimental studies.This information may be used to select the tower orientation before construction.The findings of this study are of importance for the telecommunication industry,which seeks reliable results with minimal computational efforts.In addition,it enhances the fragility analysis of telecommunication towers under strong winds,and the portfolio risk and resilience assessment of telecommunication systems.展开更多
文摘Produced in power plants, electrical energy is transported to places of consumption via the electricity network. At the heart of this network are the supports that allow electricity to be efficiently transported over long distances, guaranteeing the security and supply of energy to the various centers of use. In the construction of a line, supports occupy an important part in terms of safety and construction cost. It is therefore essential to optimize their use to reduce the cost of transmission lines. This work addresses this problem, which focuses on the optimal utilization of X-lattice towers in the construction of overhead power lines. The challenge is to reconcile the search for optimal cost and respect for the design, resistance and service constraints of the structure. To do this, a parameter having a strong correlation with the weight, foundation and construction cost of the X-lattice tower for 161 kV lines is determined as an important cost variable. This parameter is the wheelbase of the towers. The junction point between the structure and the foundations is obtained by measuring the forces at the base of the tower following the lowering of the loads. These efforts make it possible to size foundations which are of the inverted or isolated sole type. The results obtained reveal that from 8 meters in width, the wheelbase gradually changes until the optimum is obtained at 6.29 meters. With this wheelbase, the production cost is optimal. It clearly emerges from this study that the construction of lattice pylons with a wheelbase of approximately 6.29 meters makes it possible to optimize the cost of construction of 161 kV lines in the Republic of Benin.
文摘The international standard IEC 61400-12-1 Wind turbines--Part 12-1: Power performance measurements of electricity producing wind turbines" aims to provide a uniform methodology that will ensure consistency, accuracy and reproducibility in the measurement and analysis of power performance by wind turbines. Annex G of this standard provides a methodology for the appropriate arrangement of instruments on the meteorological mast to ensure accurate measurement. For cup anemometers it provides recommendations about their location relative to the mast so that the effect of mast and boom interference on their output may be minimised. These recommendations are given for both tubular masts and lattice masts. This paper compares the flow distortion predicted by the IEC standard and the results of a 3D CFD (computational fluid dynamics) simulation of a triangular lattice mast. Based on the results of wind tunnel and CFD simulation it was found that the flow distortion surrounding the lattice mast was overpredicted by the method suggested in appendix G oflEC61400-12-1. Using the CFD data it was possible to determine, for a range of flow directions and mast heights, the distance from the mast that anemometers would need to be in order to be outside the flow distortion field.
基金support from the Pennsylvania Department of Community&Economic Development(DCED)through grant PIT-19-02 and of Lehigh University through the“Research Futures:Major Program Development”the“Research Fu-tures:Special Seed Funding Opportunity”grants are gratefully acknowl-edged.
文摘An accurate estimation of wind loads on telecommunication towers is crucial for design,as well as for perform-ing reliability,resilience,and risk assessments.In particular,drag coefficient and interference factor are the most significant factors for wind load computations.Wind tunnel tests and computational fluid dynamics(CFD)are the most appropriate methods to estimate these parameters.While wind tunnel tests are generally preferred in practice,they require dedicated facilities and personnel,and can be expensive if multiple configurations of tower panels and antennas need to be tested under various wind directions(e.g.,fragility curve development for system resilience analysis).This paper provides a simple,robust,and easily accessible CFD protocol with widespread applicability,offering a practical solution in situations where wind tunnel testing is not feasible,such as complex tower configurations or cases where the cost of running experiments for all the tower-antennas configurations is prohibitively high.Different turbulence models,structural and fluid boundary conditions and mesh types are tested to provide a streamlined CFD modeling strategy that shows good convergence and balances accuracy,computational time,and robustness.The protocol is calibrated and validated with experimental studies available in the literature.To demonstrate the capabilities of the protocol,three lattice tower panels and antennas with different configurations are analyzed as examples.The protocol successfully estimates the drag and lateral wind loads and their coefficients under different wind directions.Noticeable differences are observed between the esti-mated wind loads with this protocol and those computed by a simple linear superposition used in most practical applications,indicating the importance of tower-antenna interaction.Also,as expected,the wind loads recom-mended by design codes overestimate the simulated results.More importantly,the telecommunication design codes inadequately identify the most favorable wind directions that are associated with the lowest wind loads,while the results of the proposed protocol align with observations from experimental studies.This information may be used to select the tower orientation before construction.The findings of this study are of importance for the telecommunication industry,which seeks reliable results with minimal computational efforts.In addition,it enhances the fragility analysis of telecommunication towers under strong winds,and the portfolio risk and resilience assessment of telecommunication systems.