针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月1...针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。展开更多
A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in th...A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.展开更多
The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational eff...The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.展开更多
Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differen...Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments.展开更多
How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS consi...How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.展开更多
Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling ca...Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.展开更多
On July 18,2024,the Launch of IEA Report World Energy Investment Report 2024 was released at Peking University.This conference was co-hosted by the International Energy Agency(IEA)and the Institute of Energy,Peking Un...On July 18,2024,the Launch of IEA Report World Energy Investment Report 2024 was released at Peking University.This conference was co-hosted by the International Energy Agency(IEA)and the Institute of Energy,Peking University.展开更多
On December 29,2023,the first launch service tower was completed at the Hainan International Commercial Aerospace Launch Center,marking a key step forward in building the launch capacity of China’s first commercial a...On December 29,2023,the first launch service tower was completed at the Hainan International Commercial Aerospace Launch Center,marking a key step forward in building the launch capacity of China’s first commercial aerospace launch site.On December 10,a Hyperbola-2 methane-liquid oxygen reusable verification rocket was launched successfully,marking the first recovery of reusable carrier rockets in China.展开更多
Gravity-1(YL-1) launch vehicle completed its maiden flight from the Yellow Sea near Haiyang City, Shandong Province, on January 11, 2024, this mission successfully launched three Yunyao satellites into their 500 km or...Gravity-1(YL-1) launch vehicle completed its maiden flight from the Yellow Sea near Haiyang City, Shandong Province, on January 11, 2024, this mission successfully launched three Yunyao satellites into their 500 km orbit. The YL-1 has a performance of 4.2 tons for 500 km sun-synchronous orbit and 6.5 tons for low Earth orbit. The success of YL-1 has further enriched China's launch vehicle spectrum, and will facilitate the launch of medium and large satellites and satellite constellations. In this paper, the flight ballistic solution of YL-1 is introduced. The flight trajectory consists of seven flight segments. The trajectory design comprehensively considered the characteristics and safety requirements of the vehicle to achieve effective utilization of the performance. Through comparative analysis of the flight trajectory and the predicted trajectory, the result confirmed that the flight trajectory was consistent with the design results, the design methodology was correct, and the flight test met the expected requirements. Subsequently, the vehicle will be employed for commercial application launch services.展开更多
On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong Province, sending three meteorological satellites, Yunyao-1 ...On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong Province, sending three meteorological satellites, Yunyao-1 satellite No. 18-20, into an orbit about 500 km above the ground. The successful debut flight of Gravity-1 broke many records such as the world's largest solid launch vehicle, the first sea-launched strap-on launch vehicle in the world, with the maximum carrying capacity of current commercial launch vehicle in China. This flight marked a big step in the field of China's commercial space launch application. A new breakthrough has been made, which is of great significance for further expanding China's diversified and large-scale launch capabilities of medium and low orbit satellites, expanding the spectrum of China's launch vehicle types, and promoting the development of space science.展开更多
Sea launch has the characteristics of flexible launching points, high landing area safety, and good economy. In recent years, it has become one of the important launch methods. Since 2019, China has carried out a tota...Sea launch has the characteristics of flexible launching points, high landing area safety, and good economy. In recent years, it has become one of the important launch methods. Since 2019, China has carried out a total of 11 successful sea launches. The Gravity-1(YL-1) sea launch system consists of a launch vehicle system and a sea launch platform. The sea launch program includes roll on/roll off boarding, sea mooring, sea maneuvering, anchoring and positioning, system testing, and formal launch. Through the maiden flight of YL-1, the design and manufacturing technology of large tonnage dedicated launch ship, launch vehicle vertical transfer and roll on/roll off boarding technology, anti-shake technology for sea launch, simple inflatable flexible insulation protective cover technology, and remote wireless measurement and control technology have been fully verified.展开更多
Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and la...Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and launch for its maiden flight mission. The process of vertical assembly, vertical testing, vertical transportation, and sea-based hot launches are explained. Additionally, it provides an outlook on the improved “three vertical” testing and launch mode for future missions, such as land-based launches, rapid launches, and remote sea launches.展开更多
The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final ...The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype.展开更多
基金地震数值预测联合实验室开放基金项目(2020LNEF03)APSCO Earthquake Research Project PhaseⅡ:Integrating Satellite and Ground Observations for Earthquake Signatures and Precursors(WX0519502)。
文摘针对2013年1月23日辽宁灯塔M_(S)5.1地震,利用引潮力附加构造应力(Additional Tectonic Stress Caused By Tidal Force,ATSCTF)计算模型,计算得到震中位置(41.5°N,123.2°E)在地震前5周以及震后3周(2012年12月16日—2013年2月15日)的ATSCTF变化。地震发生时,ATSCTF垂直方向分量处于高相位点附近,显示引潮力对本次正断层走滑型地震具有诱发作用。以ATSCTF变化周期的各低相位点时间(2012年12月19日、2013年1月4日、2013年1月18日、2013年2月2日)数据分别为背景,各周期期后数据分别与背景逐日相减,计算研究区(36°N~46°N,118°E~128°E)范围内,National Oceanic and Atmospheric Administration(NOAA)卫星射出长波辐射数据(Outgoing Long Wave Radiation,OLR)在各ATSCTF周期时段分布及其变化。结果显示,无震的ATSCTF变化的A、B、D周期,震中附近OLR无变化;发震的ATSCTF变化的C周期,在空间上,该地区震前OLR仅震中及其南侧区域发生了显著连续升高变化过程,在时间上经历了初始微异常→异常加强→高峰→衰减→发震→平静的演化过程,与岩石应力加载—破裂经历:初始微动破裂→扩张破裂→应力闭锁→地震爆发→平静的力学演化过程中各阶段红外辐射特征一致;显示引潮力对处于临界状态的活动断层具有诱发作用,而OLR是地震构造应力应变过程辐射表征。
基金financially supported by the National Natural Science Foundation of China under Project No.51874267 and No.12272374the Fundamental Research Funds for the Central Universities under Project Nos.WK2480000008,WK2480000007,and WK2320000049。
文摘A launching system with a filter cartridge structure was proposed to improve the muzzle velocity of the projectile.The combustion chamber of the launching system is divided into two fixed chambers,one is located in the breech chamber,and the other is arranged in the barrel.The breech chamber charge was ignited first,and the charges in the auxiliary chambers were ignited by the high-temperature,highpressure combustible gas trailing the projectile.In this way,the combustible gas in the auxiliary chambers could compensate for the pressure drop caused by the movement of the projectile.The proposed device features the advantage of launching a projectile with high muzzle velocity without exceeding the maximum pressure in the chamber.In order to obtain some internal ballistic characteristics of the launch system,some critical structure,such as the length of the filter cartridge auxiliary charge,the combustion degree of the propellant in the chamber,and the length of the barrel,are discussed.The experimental results show that with the increased auxiliary charge length,a pressure plateau or even a secondary peak pressure can be formed,which is less than the peak pressure.The projectile velocity increased by 23.57%,14.64%,and 7.65%when the diaphragm thickness was 0 mm,1 mm,and2 mm,respectively.The muzzle velocity of the projectile can be increased by 13.42%by increasing the length of the barrel.Under the same charge condition,with the increase of barrel length,the energy utilization rate of propellant increases by 28.64%.
基金supported by the National Natural Science Foundation of China (Grant Number:12372093)。
文摘The launch dynamics theory for multibody systems emerges as an innovative and efficacious approach for the study of launch dynamics,capable of addressing the challenges of complex modeling,diminished computational efficiency,and imprecise analyses of system dynamic responses found in the dynamics research of intricate multi-rigid-flexible body systems,such as self-propelled artillery.This advancement aims to enhance the firing accuracy and launch safety of self-propelled artillery.Recognizing the shortfall of overlooking the band engraving process in existing theories,this study introduces a novel coupling calculation methodology for the launch dynamics of a self-propelled artillery multibody system.This method leverages the ABAQUS subroutine interface VUAMP to compute the dynamic response of the projectile and barrel during the launch process of large-caliber self-propelled artillery.Additionally,it examines the changes in projectile resistance and band deformation in relation to projectile motion throughout the band engraving process.Comparative analysis of the computational outcomes with experimental data evidences that the proposed method offers a more precise depiction of the launch process of self-propelled artillery,thereby enhancing the accuracy of launch dynamics calculations for self-propelled artillery.
基金the Natural Science Foundation of Heilongjiang Province,China(LH2019A008).
文摘Launch safety of explosive charges has become an urgent problem to be solved by all countries in the world aslaunch situation of ammunition becomes consistentlyworse.However, the existing numericalmodels have differentdefects. This paper formulates an efficient computational model of the combustion of an explosive charge affectedby a bottom gap in the launch environment in the context of the material point method. The current temperatureis computed accurately from the heat balance equation, and different physical states of the explosive charges areconsidered through various equations of state. Microcracks in the explosive charges are described with respectto the viscoelastic statistical crackmechanics (Visco–SCRAM) model. Themethod for calculating the temperatureat the bottomof the explosive charge with respect to the bottomgap is described. Based on this combustionmodel,the temperature history of a Composition B (COMB) explosive charge in the presence of a bottom gap is obtainedduring the launch process of a 155-mm artillery. The simulation results show that the bottom gap thickness shouldbe no greater than 0.039 cm to ensure the safety of the COM B explosive charge in the launch environment. Thisconclusion is consistent with previous results and verifies the correctness of the proposed model. Ultimately, thispaper derives amathematical expression for themaximumtemperature of the COMB explosive chargewith respectto the bottomgap thickness (over the range of 0.00–0.039 cm), and establishes a quantitative evaluationmethod forthe launch safety of explosive charges.The research results provide some guidance for the assessment and detectionof explosive charge safety in complex launch environments.
基金National Natural Science Foundation of China(Grant Nos.11972193 and 92266201)。
文摘How to effectively evaluate the firing precision of weapon equipment at low cost is one of the core contents of improving the test level of weapon system.A new method to evaluate the firing precision of the MLRS considering the credibility of simulation system based on Bayesian theory is proposed in this paper.First of all,a comprehensive index system for the credibility of the simulation system of the firing precision of the MLRS is constructed combined with the group analytic hierarchy process.A modified method for determining the comprehensive weight of the index is established to improve the rationality of the index weight coefficients.The Bayesian posterior estimation formula of firing precision considering prior information is derived in the form of mixed prior distribution,and the rationality of prior information used in estimation model is discussed quantitatively.With the simulation tests,the different evaluation methods are compared to validate the effectiveness of the proposed method.Finally,the experimental results show that the effectiveness of estimation method for firing precision is improved by more than 25%.
基金supported by the Natural Science Foundation of Jiangsu Province of China(Grant No.BK20220649)the Natural Science Foundation of the Jiangsu Higher Education Institutions(Grant No.23KJB460010)+1 种基金the Key R&D Program of Jiangsu Province(Grant No.BE2022062)Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.SJCX23_2143).
文摘Research of capture mechanisms with strong capture adaptability and stable grasp is important to solve the problem of launch and recovery of torpedo-shaped autonomous underwater vehicles(AUVs).A multi-loop coupling capture mechanism with strong adaptability and high retraction rate has been proposed for the launch and recovery of torpedo-shaped AUVs with different morphological features.Firstly,the principle of capturing motion retraction is described based on the appearance characteristics of torpedo-shaped AUVs,and the configuration synthesis of the capture mechanism is carried out using the method of constrained chain synthesis.Secondly,the screw theory is employed to analyze the degree of freedom(DoF)of the capture mechanism.Then,the 3D model of the capture mechanism is established,and the kinematics and dynamics simulations are carried out.Combined with the capture orientation requirements of the capture mechanism,the statics and vibration characteristics analyses are carried out.Furthermore,considering the capture process and the underwater working environment,the motion characteristics and hydraulics characteristics of the capture mechanism are analyzed.Finally,a principle prototype is developed and the torpedo-shaped AUVs capture experiment is completed.The work provides technical reserves for the research and development of AUV capture special equipment.
文摘On July 18,2024,the Launch of IEA Report World Energy Investment Report 2024 was released at Peking University.This conference was co-hosted by the International Energy Agency(IEA)and the Institute of Energy,Peking University.
文摘On December 29,2023,the first launch service tower was completed at the Hainan International Commercial Aerospace Launch Center,marking a key step forward in building the launch capacity of China’s first commercial aerospace launch site.On December 10,a Hyperbola-2 methane-liquid oxygen reusable verification rocket was launched successfully,marking the first recovery of reusable carrier rockets in China.
文摘Gravity-1(YL-1) launch vehicle completed its maiden flight from the Yellow Sea near Haiyang City, Shandong Province, on January 11, 2024, this mission successfully launched three Yunyao satellites into their 500 km orbit. The YL-1 has a performance of 4.2 tons for 500 km sun-synchronous orbit and 6.5 tons for low Earth orbit. The success of YL-1 has further enriched China's launch vehicle spectrum, and will facilitate the launch of medium and large satellites and satellite constellations. In this paper, the flight ballistic solution of YL-1 is introduced. The flight trajectory consists of seven flight segments. The trajectory design comprehensively considered the characteristics and safety requirements of the vehicle to achieve effective utilization of the performance. Through comparative analysis of the flight trajectory and the predicted trajectory, the result confirmed that the flight trajectory was consistent with the design results, the design methodology was correct, and the flight test met the expected requirements. Subsequently, the vehicle will be employed for commercial application launch services.
文摘On January 11, 2024, the Gravity-1 launch vehicle successfully carried out its maiden flight from a mobile sea platform off the coast of Haiyang in Shandong Province, sending three meteorological satellites, Yunyao-1 satellite No. 18-20, into an orbit about 500 km above the ground. The successful debut flight of Gravity-1 broke many records such as the world's largest solid launch vehicle, the first sea-launched strap-on launch vehicle in the world, with the maximum carrying capacity of current commercial launch vehicle in China. This flight marked a big step in the field of China's commercial space launch application. A new breakthrough has been made, which is of great significance for further expanding China's diversified and large-scale launch capabilities of medium and low orbit satellites, expanding the spectrum of China's launch vehicle types, and promoting the development of space science.
文摘Sea launch has the characteristics of flexible launching points, high landing area safety, and good economy. In recent years, it has become one of the important launch methods. Since 2019, China has carried out a total of 11 successful sea launches. The Gravity-1(YL-1) sea launch system consists of a launch vehicle system and a sea launch platform. The sea launch program includes roll on/roll off boarding, sea mooring, sea maneuvering, anchoring and positioning, system testing, and formal launch. Through the maiden flight of YL-1, the design and manufacturing technology of large tonnage dedicated launch ship, launch vehicle vertical transfer and roll on/roll off boarding technology, anti-shake technology for sea launch, simple inflatable flexible insulation protective cover technology, and remote wireless measurement and control technology have been fully verified.
文摘Gravity-1 was the world's first carrier rocket to adopt the sea-based “three vertical” testing launch mode. This article introduces the overall layout of the launch site and the workflow of rocket testing and launch for its maiden flight mission. The process of vertical assembly, vertical testing, vertical transportation, and sea-based hot launches are explained. Additionally, it provides an outlook on the improved “three vertical” testing and launch mode for future missions, such as land-based launches, rapid launches, and remote sea launches.
文摘The reusable launch vehicle (RLV) presents a new avenue for reducing cost of space transportation. The landing mechanism, which provides landing support and impact absorption, is a vital component of the RLV at final stage of recovery. This study proposes a novel legged deployable landing mechanism (LDLM) for RLV. The Watt-II six-bar mechanism is adopted to obtain the preferred configuration via the application of the linkage variation approach. To endow the proposed LDLM with advantages of large landing support region, lightweight, and reasonable linkage internal forces, a multi-objective optimization paradigm is developed. Furthermore, the optimal scale parameters for guiding the LDLM prototype design is obtained numerically using the non-dominated sorting genetic algorithm-II (NSGA-II) evolutionary algorithm. A fully-functional scaled RLV prototype is developed by integrating the gravity-governed deploying scheme to facilitate unfolding action to avoid full-range actuation, a dual-backup locking mechanism to enhance reliability of structure stiffening as fully deployed, and a shock absorber (SA) with multistage honeycomb to offer reliable shock absorbing performance. The experimental results demonstrate that the proposed LDLM is capable of providing rapid and smooth deployment (duration less than 1.5 s) with mild posture disturbance to the cabin (yaw and pitch fluctuations less than 6°). In addition, it provides satisfactory impact attenuation (acceleration peak less than 10g (g is the gravitational acceleration)) in the 0.2 m freefall test, which makes the proposed LDLM a potential alternative for developing future RLV archetype.