Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instabilit...Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.展开更多
Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extracti...Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics.展开更多
Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na...Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.展开更多
Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions dur...Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions during anionic redox reactions lead to poor electrochemical performance with sluggish kinetics.Here, we propose a synergy of Li-Cu cations in harnessing the full potential of oxygen redox, through Li displacement and suppressed phase transition in P3-type layered oxide cathode. P3-type Na_(0.7)[Li_(0.1)Cu_(0.2)Mn_(0.7)]O_(2) cathode delivers a large specific capacity of ~212 mA h g^(-1)at 15 mA g^(-1). The discharge capacity is maintained up to ~90% of the initial capacity after 100 cycles, with stable occurrence of the oxygen redox in the high-voltage region. Through advanced experimental analyses and first-principles calculations, it is confirmed that a stepwise redox reaction based on Cu and O ions occurs for the charge-compensation mechanism upon charging. Based on a concrete understanding of the reaction mechanism, the Li displacement by the synergy of Li-Cu cations plays a crucial role in suppressing the structural change of the P3-type layered material under the oxygen redox reaction, and it is expected to be an effective strategy for stabilizing the oxygen redox in the layered oxides of Na-ion batteries.展开更多
In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2...In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA))have been arousing great interests to improve the energy density of LIBs.However,these Nirich cathodes always suffer from rapid capacity degradation induced by unstable cathode-electrolyte interphase(CEI)layer and destruction of bulk crystal structure.Therefore,varied electrode/electrolyte interface engineering strategies(such as electrolyte formulation,material coating or doping)have been developed for Ni-rich cathodes protection.Among them,developing electrolyte functional additives has been proven to be a simple,effective,and economic method to improve the cycling stability of Nirich cathodes.This is achieved by removing unfavorable species(such as HF,H_(2)O)or constructing a stable and protective CEI layer against unfavorable reactive species(such as HF,H_(2)O).Herein,this review mainly introduces the varied classes of electrolyte functional additives and their working mechanism for interfacial engineering of Ni-rich cathodes.Especially,key favorable species for stabilizing CEI layer are summarized.More importantly,we put forward perspectives for screening and customizing ideal functional additives for high performance Ni-rich cathodes based LIBs.展开更多
The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/elec...The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/electrochemical side reactions are considered to be the origin of the interfacial deterioration.However,the influence of chemical and electrochemical side reactions on the interfacial deterioration is rarely studied specifically.In this work,the deterioration mechanism of the interface between LiNi0.85-xCo0.15AlxO2 and Li10GeP2S12 is investigated in detail by combining in/ex-situ Raman spectra and Electrochemical Impedance Spectroscopy(EIS).It can be determined that chemical side reaction between LiNi0.8Co0.15Al0.05O2 and Li10GeP2S12 will occur immediately once contacted,and the interfacial deterioration becomes more serious after charge-discharge process under the dual effects of chemical and electrochemical side reactions.Moreover,our research reveals that the interfacial stability and the cycle performance of ASSLB can be greatly enhanced by increasing Al-substitution for Ni in LiNi0.85-xCo0.15AlxO2.In particular,the capacity retention of LiNi0.6Co0.15Al0.25O2 cathode after 200 cycles can reach 81.9%,much higher than that of LiNi0.8Co0.15Al0.05O2 cathode(12.5%@200 cycles).This work gives an insight to study the interfacial issues between Ni-rich layered oxide cathode and sulfide electrolyte for ASSLBs.展开更多
Li and Mn rich(LMR)layered oxides,written as xLi_(2) MnO_(3)·(1-x)LiMO_(2)(M=Mn,Ni,Co,Fe,etc.),have been widely reported in recent years due to their high capacity and high energy density.The stable structure and...Li and Mn rich(LMR)layered oxides,written as xLi_(2) MnO_(3)·(1-x)LiMO_(2)(M=Mn,Ni,Co,Fe,etc.),have been widely reported in recent years due to their high capacity and high energy density.The stable structure and superior performance of LMR oxides make them one of the most promising candidates for the next-generation cathode materials.However,the commercialization of these materials is hindered by several drawbacks,such as low initial Coulombic efficiency,the degradation of voltage and capacity during cycling,and poor rate performance.This review summarizes research progress in solving these concerns of LMR cathodes over the past decade by following three classes of strategies:morphology design,bulk design,and surface modification.We elaborate on the processing procedures,electrochemical performance,mechanisms,and limitations of each approach,and finally put forward the concerns left and the possible solutions for the commercialization of LMR cathodes.展开更多
Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides...Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides distinguish themselves from the mains cathode materials of SIBs owing to their advantages such as high specific capacity,simple synthesis route,and environmental benignity.However,the commercial development of the layered oxides is limited by sluggish kinetics,complex phase transition and poor air stability.Based on the research ideas from macro-to micro-scale,this review systematically summarizes the current optimization strategies of sodium-ion layered oxide cathodes(SLOC)from different dimensions:microstructure design,local chemistry regulation and structural unit construction.In the dimension of microstructure design,the various structures such as the microspheres,nanoplates,nanowires and exposed active facets are prepared to improve the slow kinetics and electrochemical performance.Besides,from the view of local chemistry regulation by chemical element substitution,the intrinsic electron/ion properties of SLOC have been enhanced to strengthen the structural stability.Furthermore,the optimization idea of endeavors to regulate the physical and chemical properties of cathode materials essentially is put forward from the dimension of structural unit construction.The opinions and strategies proposed in this review will provide some inspirations for the design of new SLOC in the future.展开更多
P2-type layered oxide,Na2/3Ni1/3Mn2/3O2,has drawn particular interest as a promising cathode material for sodium-ion batteries(SIBs)due to its fast sodium-ion transport channels with low migration potential.However,so...P2-type layered oxide,Na2/3Ni1/3Mn2/3O2,has drawn particular interest as a promising cathode material for sodium-ion batteries(SIBs)due to its fast sodium-ion transport channels with low migration potential.However,some catastrophic flaws,such as air instability,complicated multiphase evolution,and irreversible anionic redox,limit its electrochemical performance and hinder its application.Here,an air-stable single-crystal P2-type Na_(2/3)Ni_(1/3)Mn_(1/3)Ti_(1/3)O_(2)is proposed based on the multifunctional structural modulation of Ti substitution that could alleviate the issues for practical SIBs.As a result,the cathode with high energy density shows excellent air stability and highly reversible phase transitions(P2–OP4),and delivers faster kinetics and stable anion redox chemistry.Meanwhile,a thorough investigation of the relationship between structure,function,and properties is demonstrated,emphasizing formation processes,electrochemical behavior,structural evolution,and air stability.Overall,this study provides the direction of multifunctional structural modulation for the development of high-performance sodium-based layered cathode materials for practical applications.展开更多
Single-crystalline layered oxide materials for lithium-ion batteries are featured by their excellent capacity retention over their polycrystalline counterparts,making them sought-after cathode candidates.Their capacit...Single-crystalline layered oxide materials for lithium-ion batteries are featured by their excellent capacity retention over their polycrystalline counterparts,making them sought-after cathode candidates.Their capacity degradation,however,becomes more severe under high-voltage cycling,hindering many high-energy applications.It has long been speculated that the interplay among composition heterogeneity,lattice deformation,and redox stratification could be a driving force for the performance decay.The underlying mechanism,however,is not well-understood.In this study,we use X-ray microscopy to systematically examine single-crystalline NMC particles at the mesoscale.This technique allows us to capture detailed signals of diffraction,spectroscopy,and fluorescence,offering spatially resolved multimodal insights.Focusing on early high-voltage charging cycles,we uncover heterogeneities in valence states and lattice structures that are inherent rather than caused by electrochemical abuse.These heterogeneities are closely associated with compositional variations within individual particles.Our findings provide useful insights for refining material synthesis and processing for enhanced battery longevity and efficiency.展开更多
Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainabl...Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainable availability of sodium resources,especially in large-scale energy storage systems(EESs).Among various cathode candidates for SIBs,Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity,high operating potential,facile synthesis,and environmental benignity.However,there are a series of fatal issues in terms of poor air stability,unstable cathode/electrolyte interphase,and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application,outside to inside of layered oxide cathodes,which severely limit their practical application.This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms,and to provide a comprehensive summary of mainstream modification strategies including chemical substitution,surface modification,structure modulation,and so forth,concentrating on how to improve air stability,reduce interfacial side reaction,and suppress phase transition for realizing high structural reversibility,fast Na+kinetics,and superior comprehensive electrochemical performance.The advantages and disadvantages of different strategies are discussed,and insights into future challenges and opportunities for layered oxide cathodes are also presented.展开更多
Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer ...Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given.展开更多
High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising...High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising candidates for LIB.However,a limitation with layered oxides cathodes is the transition metal and Li site mixing,which significantly impacts battery capacity and cycling stability.Despite recent research on Li/Ni mixing,there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li;therefore,practical means to address it.Here,a critical review of cation mixing in layered cathodes has been provided,emphasising the understanding of cation mixing mechanisms and their impact on cathode material design.We list and compare advanced characterisation techniques to detect cation mixing in the material structure;examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance,and critically assess how these can be applied practically.An appraisal of future research directions,including superexchange interaction to stabilise structures and boost capacity retention has also been concluded.Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and,therefore,of interest to researchers and manufacturers.展开更多
Earth abundant O3-type NaFe_(0.5)Mn_(0.5)O_(2)layered oxide is regarded as one of the most promising cathodes for sodium ion batteries due to its low cost and high energy density.However,its poor structural stability ...Earth abundant O3-type NaFe_(0.5)Mn_(0.5)O_(2)layered oxide is regarded as one of the most promising cathodes for sodium ion batteries due to its low cost and high energy density.However,its poor structural stability and cycle life strongly impede the practical application.Herein,the dynamic phase evolution as well as charge compensation mechanism of O3-type NaFe_(0.5)Mn_(0.5)O_(2)cathode during sodiation/desodiation are revealed by a systemic study with operando X-ray diffraction and X-ray absorption spectroscopy,high resolution neutron powder diffraction and neutron pair distribution functions.The layered structure experiences a phase transition of O3→P3→OP2→ramsdellite during the desodiation,and a new O3’phase is observed at the end of the discharge state(1.5 V).The density functional theory(DFT)calculations and nPDF results suggest that depletion of Na^(+)ions induces the movement of Fe into Na layer resulting the formation of an inert ramsdellite phase thus causing the loss of capacity and structural integrity.Meanwhile,the operando XAS clarified the voltage regions for active Mn^(3+)/Mn^(4+)and Fe^(3+)/Fe^(4+)redox couples.This work points out the universal underneath problem for Fe-based layered oxide cathodes when cycled at high voltage and highlights the importance to suppress Fe migration regarding the design of high energy O3-type cathodes for sodium ion batteries.展开更多
Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-m...Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-metal oxides are recognized as one of the most attractive sodium-ion storage cathode candidates by virtue of their high compositional diversity, environmental friendliness, ease of synthesis, and promising theoretical capacities. The practicability, however, is still limited by the fact that the energy densities of most Na-storage layered oxide cathodes solely using the conventional cationic redox are not comparable to those of the lithium-ion storage counterparts. Recently, the strategy of activating anionic redox(O^(2-)/O^(n-)) which is popular in Li-rich layered materials has been successfully applied in oxide cathodes of SIBs to promote the energy density to a new level. It is interesting to note that excess Na is not the prerequisite to induce anionic redox in sodium oxides, indicating a new mechanism underlying Na-ion materials. Herein, the latest advances on the anionic redox chemistry in layered oxide cathodes for SIBs,including the fundamental theories, triggering strategies, and applicable cathode materials, are comprehensively reviewed.Moreover, the challenges(mainly O_(2) release) facing anionic redox are discussed, and the possible remedies are outlined for future developments toward a highly reversible oxygen usage. We believe that this review can provide a valuable guidance for the exploration of high-energy layered oxide cathode materials of SIBs.展开更多
Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-rel...Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-related capacity with small voltage hysteresis,however,they are limited by rapid capacity degradation and poor rate capability,which arise from inferior structure changes due to repeated redox of lattice oxygen.Herein,redox-inactive Ti^(4+)is introduced to substitute partial Mn^(4+)to form Na_(2) Ti_(0.5)Mn_(2.5)O_7(Na_(4/7)[□_(1/7)Ti_(1/7)Mn_(5/7)]O_(2),□ for Mn vacancies),which can effectively restrain unfavorable interlayer gliding of Na2 Mn307 at high charge voltages,as reflected by an ultralow-strain volume variation of 0.11%.There is no irreversible O_(2) evolution observed in Na_(2) Ti_(0.5)Mn_(2.5)O_7 upon charging,which stabilizes the lattice oxygen and ensures the overall structural stability.It exhibits increased capacity retention of 79.1% after 60 cycles in Na_(2) Ti_(0.5)Mn_(2.5)O_7(17.1% in Na_(2) Mn_(3) O_7) and good rate capability(92.1 mAh g^(-1) at 0.5 A g^(-1)).This investigation provides new insights into designing high-performance cathode materials with reversible ARR and structural stability for SIBs.展开更多
High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challen...High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challenges in poor cyclic and thermal stability before realizing practical application where cycling life is considered.Among many improved strategies,mechanical and chemical stability for the electrode electrolyte interface plays a key role in addressing these challenges.Therefore,extensive effort has been made to address the challenges of electrode-electrolyte interface.In this progress,the failure mechanism of Ni-rich cathode,lithium metal anode and electrolytes are reviewed,and the latest breakthrough in stabilizing electrode-electrolyte interface is also summarized.Finally,the challenges and future research directions of Ni-rich LMBs are put forward.展开更多
The 3d transition-metal nickel(Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years,from Ni-based alkaline rechargeable batteries,such as nickel-cadmium(Ni-Cd)and nickel-metal hyd...The 3d transition-metal nickel(Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years,from Ni-based alkaline rechargeable batteries,such as nickel-cadmium(Ni-Cd)and nickel-metal hydride(Ni-MH)batteries,to the Ni-rich cathode featured in lithium-ion batteries(LIBs).Ni-based alkaline batteries were first invented in the 1900s,and the well-developed Ni-MH batteries were used on a large scale in Toyota Prius vehicles in the mid-1990s.Around the same time,however,Sony Corporation commercialized the first LIBs in camcorders.After temporally fading as LiCoO_(2) dominated the cathode in LIBs,nickel oxide-based cathodes eventually found their way back to the mainstreaming battery industry.The uniqueness of Ni in batteries is that it helps to deliver high energy density and great storage capacity at a low cost.This review mainly provides a comprehensive overview of the key role of Ni-based cathodes in rechargeable batteries.After presenting the physical and chemical properties of the 3d transition-metal Ni,which make it an optimal cationic redox center in the cathode of batteries,we introduce the structure,reaction mechanism,and modification of nickel hydroxide electrode in Ni-Cd and Ni-MH rechargeable batteries.We then move on to the Ni-based layered oxide cathode in LIBs,with a focus on the structure,issues,and challenges of layered oxides,LiNiO_(2),and LiNi_(1−x−y)Co_(x)Mn_(y)O_(2).The role of Ni in the electrochemical performance and thermal stability of the Ni-rich cathode is highlighted.By bridging the“old”Ni-based batteries and the“modern”Ni-rich cathode in the LIBs,this review is committed to providing insights into the Ni-based electrochemistry and material design,which have been under research and development for over 100 years.This overview would shed new light on the development of advanced Ni-containing batteries with high energy density and long cycle life.展开更多
Sodium-ion batteries have the potential to be an alternative to lithium-ion batteries especially for applications such as large-scale grid energy storage. The development of suitable cathode materials is crucial to th...Sodium-ion batteries have the potential to be an alternative to lithium-ion batteries especially for applications such as large-scale grid energy storage. The development of suitable cathode materials is crucial to the commercialization of sodium-ion batteries.Sodium-based layered-type transition metal oxides are promising candidates as cathode materials as they offer decent energy density and are easy to be synthesized. Unfortunately, most layered oxides suffer from poor air-stability, which greatly increases the cost of manufacturing and handling. The air-sensitivity severely limits the development and commercial application of sodium-ion batteries. A review that summarizes the latest understanding and solutions of air-sensitivity is desired. In this review,the background and fundamentals of sodium-based layered-type cathode materials are presented, followed by a discussion on the latest research on air-sensitivity of these materials. The mechanism is complex and involves multiple chemical and physical reactions. Various strategies are shown to alleviate some of the corresponding problems and promote the feasible application of sodium-ion batteries, followed by an outlook on current and future research directions of air-stable cathode materials. It is believed that this review will provide insights for researchers to develop practically relevant materials for sodium-ion batteries.展开更多
The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition(hexagonal to hexagonal(H2→H3)),degenerating from the...The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition(hexagonal to hexagonal(H2→H3)),degenerating from the build-up of mechanical strain and undesired parasitic reactions.Herein,a perovskite Li_(0.35)La_(0.55)TiO_(3)(LLTO)layer is built onto Ni-rich cathodes crystal to induce layered@spinel@perovskite heterostructure to solve the root cause of capacity fade.Intensive exploration based on structure characterizations,in situ X-ray diffraction techniques,and first-principles calculations demonstrate that such a unique heterostructure not only can improve the ability of the host structure to withstand the mechanical strain but also provides fast diffusion channels for lithium ions as well as provides a protective barrier against electrolyte corrosion.Impressively,the LLTO modified LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)cathode manifests an unexpected cyclability with an extremely high-capacity retention of≈94.6%after 100 cycles,which is superior to the pristine LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(79.8%).Furthermore,this modified electrode also shows significantly enhanced cycling stability even withstanding a high cut-off voltage of 4.6 V.This surface self-reconstruction strategy provides deep insight into the structure/interface engineering to synergistically stabilize structure stability and regulate the physicochemical properties of Ni-rich cathodes,which will also unlock a new perspective of surface interface engineering for layered cathode materials.展开更多
基金National Natural Science Foundation of China(52202327)Science and Technology Commission of Shanghai Municipality(22ZR1471300)+2 种基金National Science Foundation of China(Grant 51972326)Youth Innovation Promotion Association CAS,Foundation Strengthening ProjectProgram of Shanghai Academic Research Leader(Grant 22XD1424300).
文摘Na-ion O3-type layered oxides are prospective cathodes for Na-ion batteries due to high energy density and low-cost.Nevertheless,such cathodes usually suffer from phase transitions,sluggish kinetics and air instability,making it difficult to achieve high performance solid-state sodium-ion batteries.Herein,the high-entropy design and Li doping strategy alleviate lattice stress and enhance ionic conductivity,achieving high-rate performance,air stability and electrochemically thermal stability for Na_(0.95)Li_(0.06)Ni_(0.25)Cu_(0.05)Fe_(0.15)Mn_(0.49)O_(2).This cathode delivers a high reversible capacity(141 mAh g^(−1)at 0.2C),excellent rate capability(111 mAh g^(−1)at 8C,85 mAh g^(−1)even at 20C),and long-term stability(over 85%capacity retention after 1000 cycles),which is attributed to a rapid and reversible O3–P3 phase transition in regions of low voltage and suppresses phase transition.Moreover,the compound remains unchanged over seven days and keeps thermal stability until 279℃.Remarkably,the polymer solid-state sodium battery assembled by this cathode provides a capacity of 92 mAh g^(−1)at 5C and keeps retention of 96%after 400 cycles.This strategy inspires more rational designs and could be applied to a series of O3 cathodes to improve the performance of solid-state Na-ion batteries.
基金supported by the National Natural Science Foundation of China(Grant No.12105197 and 52088101)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010319)+1 种基金the open research fund of Songshan Lake Materials Laboratory(No.2022SLABFK04)Large Scientific Facility Open Subject of Songshan Lake,Dongguan,Guangdong
文摘Due to a high energy density,layered transition-metal oxides have gained much attention as the promising sodium-ion batteries cathodes.However,they readily suffer from multiple phase transitions during the Na extraction process,resulting in large lattice strains which are the origin of cycledstructure degradations.Here,we demonstrate that the Na-storage lattice strains of layered oxides can be reduced by pushing charge transfer on anions(O^(2-)).Specifically,the designed O3-type Ru-based model compound,which shows an increased charge transfer on anions,displays retarded O3-P3-O1 multiple phase transitions and obviously reduced lattice strains upon cycling as directly revealed by a combination of ex situ X-ray absorption spectroscopy,in situ X-ray diffraction and geometric phase analysis.Meanwhile,the stable Na-storage lattice structure leads to a superior cycling stability with an excellent capacity retention of 84%and ultralow voltage decay of 0.2 mV/cycle after 300 cycles.More broadly,our work highlights an intrinsically structure-regulation strategy to enable a stable cycling structure of layered oxides meanwhile increasing the materials’redox activity and Nadiffusion kinetics.
基金funding supports from the National Key R&D Program of China(Grant Nos.2022YFB2404400 and 2019YFA0308500)Beijing Natural Science Foundation(Z190010)National Natural Science Foundation of China(Grant Nos.51991344,52025025,52072400,and 52002394)。
文摘Understanding the structural origin of the competition between oxygen 2p and transition-metal 3d orbitals in oxygen-redox(OR)layered oxides is eminently desirable for exploring reversible and high-energy-density Li/Na-ion cathodes.Here,we reveal the correlation between cationic ordering transition and OR degradation in ribbon-ordered P3-Na_(0.6)Li_(0.2)Mn_(0.8)O_(2) via in situ structural analysis.Comparing two different voltage windows,the OR capacity can be improved approximately twofold when suppressing the in-plane cationic ordering transition.We find that the intralayer cationic migration is promoted by electrochemical reduction from Mn^(4+)to Jahn–Teller Mn^(3+)and the concomitant NaO_(6) stacking transformation from triangular prisms to octahedra,resulting in the loss of ribbon ordering and electrochemical decay.First-principles calculations reveal that Mn^(4+)/Mn^(3+)charge ordering and alignment of the degenerate eg orbital induce lattice-level collective Jahn–Teller distortion,which favors intralayer Mn-ion migration and thereby accelerates OR degradation.These findings unravel the relationship between in-plane cationic ordering and OR reversibility and highlight the importance of superstructure protection for the rational design of reversible OR-active layered oxide cathodes.
基金supported by the National Research Foundation of Korea grant funded by the Korea government (NRF2021R1A2C1014280)the Fundamental Research Program of the Korea Institute of Material Science (PNK9370)。
文摘Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions during anionic redox reactions lead to poor electrochemical performance with sluggish kinetics.Here, we propose a synergy of Li-Cu cations in harnessing the full potential of oxygen redox, through Li displacement and suppressed phase transition in P3-type layered oxide cathode. P3-type Na_(0.7)[Li_(0.1)Cu_(0.2)Mn_(0.7)]O_(2) cathode delivers a large specific capacity of ~212 mA h g^(-1)at 15 mA g^(-1). The discharge capacity is maintained up to ~90% of the initial capacity after 100 cycles, with stable occurrence of the oxygen redox in the high-voltage region. Through advanced experimental analyses and first-principles calculations, it is confirmed that a stepwise redox reaction based on Cu and O ions occurs for the charge-compensation mechanism upon charging. Based on a concrete understanding of the reaction mechanism, the Li displacement by the synergy of Li-Cu cations plays a crucial role in suppressing the structural change of the P3-type layered material under the oxygen redox reaction, and it is expected to be an effective strategy for stabilizing the oxygen redox in the layered oxides of Na-ion batteries.
基金supported by the National Key R&D Program of China(Grant No.2017YFE0127600)the National Natural Science Foundation of China(Grant No.U1706229、21901248)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA22010600)the National Natural Science Foundation for Distinguished Young Scholars of China(No.51625204)the Taishan Scholars of Shandong Province(ts201511063)。
文摘In advantages of their high capacity and high operating voltage,the nickel(Ni)-rich layered transition metal oxide cathode materials(LiNi_(x)Co_(y)Mn_(z)O_(2)(NCMxyz,x+y+z=1,x≥0.5)and LiNi_(0.8)Co_(0.15)Al_(0.05)O_(2)(NCA))have been arousing great interests to improve the energy density of LIBs.However,these Nirich cathodes always suffer from rapid capacity degradation induced by unstable cathode-electrolyte interphase(CEI)layer and destruction of bulk crystal structure.Therefore,varied electrode/electrolyte interface engineering strategies(such as electrolyte formulation,material coating or doping)have been developed for Ni-rich cathodes protection.Among them,developing electrolyte functional additives has been proven to be a simple,effective,and economic method to improve the cycling stability of Nirich cathodes.This is achieved by removing unfavorable species(such as HF,H_(2)O)or constructing a stable and protective CEI layer against unfavorable reactive species(such as HF,H_(2)O).Herein,this review mainly introduces the varied classes of electrolyte functional additives and their working mechanism for interfacial engineering of Ni-rich cathodes.Especially,key favorable species for stabilizing CEI layer are summarized.More importantly,we put forward perspectives for screening and customizing ideal functional additives for high performance Ni-rich cathodes based LIBs.
基金financially supported partly by the National Key Research and Development Program of China(2018YFE0111600)Tianjin Sci.&Tech.Program(17YFZCGX00560,18ZXJMTG00040,19JCZDJC31800)。
文摘The interfacial instability between Ni-rich layered oxide cathodes and sulfide electrolytes is a serious problem,leading to poor electrochemical properties of all-solid-state lithium batteries(ASSLB).The chemical/electrochemical side reactions are considered to be the origin of the interfacial deterioration.However,the influence of chemical and electrochemical side reactions on the interfacial deterioration is rarely studied specifically.In this work,the deterioration mechanism of the interface between LiNi0.85-xCo0.15AlxO2 and Li10GeP2S12 is investigated in detail by combining in/ex-situ Raman spectra and Electrochemical Impedance Spectroscopy(EIS).It can be determined that chemical side reaction between LiNi0.8Co0.15Al0.05O2 and Li10GeP2S12 will occur immediately once contacted,and the interfacial deterioration becomes more serious after charge-discharge process under the dual effects of chemical and electrochemical side reactions.Moreover,our research reveals that the interfacial stability and the cycle performance of ASSLB can be greatly enhanced by increasing Al-substitution for Ni in LiNi0.85-xCo0.15AlxO2.In particular,the capacity retention of LiNi0.6Co0.15Al0.25O2 cathode after 200 cycles can reach 81.9%,much higher than that of LiNi0.8Co0.15Al0.05O2 cathode(12.5%@200 cycles).This work gives an insight to study the interfacial issues between Ni-rich layered oxide cathode and sulfide electrolyte for ASSLBs.
基金financially supported by the National Key R&D Program of China(2016YFB0700600)the Soft Science Research Project of Guangdong Province(No.2017B030301013)the Shenzhen Science and Technology Research Grant(ZDSYS201707281026184)。
文摘Li and Mn rich(LMR)layered oxides,written as xLi_(2) MnO_(3)·(1-x)LiMO_(2)(M=Mn,Ni,Co,Fe,etc.),have been widely reported in recent years due to their high capacity and high energy density.The stable structure and superior performance of LMR oxides make them one of the most promising candidates for the next-generation cathode materials.However,the commercialization of these materials is hindered by several drawbacks,such as low initial Coulombic efficiency,the degradation of voltage and capacity during cycling,and poor rate performance.This review summarizes research progress in solving these concerns of LMR cathodes over the past decade by following three classes of strategies:morphology design,bulk design,and surface modification.We elaborate on the processing procedures,electrochemical performance,mechanisms,and limitations of each approach,and finally put forward the concerns left and the possible solutions for the commercialization of LMR cathodes.
基金supported by the National Natural Science Foundation of China(51971124,52171217)the State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University(EIPE22208)+5 种基金the National Postdoctoral Program for Innovative Talents(BX20200222)the China Postdoctoral Science Foundation(2020M682878)Zhejiang Natural Science Foundation(LQ23E020002)Wenzhou Natural Science Foundation(G20220019)Cooperation between industry and education project of Ministry of Education(220601318235513)National Natural Science Foundation of China(52202284)。
文摘Because of the low price and abundant reserves of sodium compared with lithium,the research of sodium-ion batteries(SIBs)in the field of large-scale energy storage has returned to the research spotlight.Layered oxides distinguish themselves from the mains cathode materials of SIBs owing to their advantages such as high specific capacity,simple synthesis route,and environmental benignity.However,the commercial development of the layered oxides is limited by sluggish kinetics,complex phase transition and poor air stability.Based on the research ideas from macro-to micro-scale,this review systematically summarizes the current optimization strategies of sodium-ion layered oxide cathodes(SLOC)from different dimensions:microstructure design,local chemistry regulation and structural unit construction.In the dimension of microstructure design,the various structures such as the microspheres,nanoplates,nanowires and exposed active facets are prepared to improve the slow kinetics and electrochemical performance.Besides,from the view of local chemistry regulation by chemical element substitution,the intrinsic electron/ion properties of SLOC have been enhanced to strengthen the structural stability.Furthermore,the optimization idea of endeavors to regulate the physical and chemical properties of cathode materials essentially is put forward from the dimension of structural unit construction.The opinions and strategies proposed in this review will provide some inspirations for the design of new SLOC in the future.
基金supported by the National Natural Science Foundation of China(52250710680,51971124,52171217,52202284)Hunan Provincial Science and Technology Innovation Major Project(2020GK1010-2020GK1014-4)+7 种基金Zhejiang Provincial Natural Science Foundation(LZ21E010001,LQ23E020002)Science and Technology Project of State Grid Corporation of China(5419-202158503A-0-5-ZN)Wenzhou key scientific and technological innovation research projects(ZG2023053)Wenzhou Natural Science Foundation(ZG2022032,G20220019,G20220021)Cooperation between industry and education project of Ministry of Education(220601318235513)State Key Laboratory of Electrical Insulation and Power Equipment,Xi’an Jiaotong University(EIPE22208)the China Scholarship Council(202106370062)Doctoral Innovation Foundation of Wenzhou University(3162023001001)。
文摘P2-type layered oxide,Na2/3Ni1/3Mn2/3O2,has drawn particular interest as a promising cathode material for sodium-ion batteries(SIBs)due to its fast sodium-ion transport channels with low migration potential.However,some catastrophic flaws,such as air instability,complicated multiphase evolution,and irreversible anionic redox,limit its electrochemical performance and hinder its application.Here,an air-stable single-crystal P2-type Na_(2/3)Ni_(1/3)Mn_(1/3)Ti_(1/3)O_(2)is proposed based on the multifunctional structural modulation of Ti substitution that could alleviate the issues for practical SIBs.As a result,the cathode with high energy density shows excellent air stability and highly reversible phase transitions(P2–OP4),and delivers faster kinetics and stable anion redox chemistry.Meanwhile,a thorough investigation of the relationship between structure,function,and properties is demonstrated,emphasizing formation processes,electrochemical behavior,structural evolution,and air stability.Overall,this study provides the direction of multifunctional structural modulation for the development of high-performance sodium-based layered cathode materials for practical applications.
基金This research used resources 3-ID Hard x-ray nano probe and 18-ID full field x-ray imaging of the National Synchrotron Light Source IIa U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No.DE-SC0012704+2 种基金Stanford Synchrotron Radiation Lightsource of the SLAC National Accelerator Laboratory is supported by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences under Contract No.DE-AC02-76SF00515The work at the Central Universities of Central South University was sponsored by the National Natural Science Foundation of China(52172264)Fundamental Research Funds from Central Universities of Central South University.We would like to extend our gratitude to Yinjia Zhang and Liangjin Gong from Ke Du's group at Central South University for their technical support and useful discussions.
文摘Single-crystalline layered oxide materials for lithium-ion batteries are featured by their excellent capacity retention over their polycrystalline counterparts,making them sought-after cathode candidates.Their capacity degradation,however,becomes more severe under high-voltage cycling,hindering many high-energy applications.It has long been speculated that the interplay among composition heterogeneity,lattice deformation,and redox stratification could be a driving force for the performance decay.The underlying mechanism,however,is not well-understood.In this study,we use X-ray microscopy to systematically examine single-crystalline NMC particles at the mesoscale.This technique allows us to capture detailed signals of diffraction,spectroscopy,and fluorescence,offering spatially resolved multimodal insights.Focusing on early high-voltage charging cycles,we uncover heterogeneities in valence states and lattice structures that are inherent rather than caused by electrochemical abuse.These heterogeneities are closely associated with compositional variations within individual particles.Our findings provide useful insights for refining material synthesis and processing for enhanced battery longevity and efficiency.
基金This work was supported by the National Key Research and Development Programs(Grant No.2021YFB2400400)National Natural Science Foundation of China(Grant Nos.51772093,52202284)+5 种基金Major Science and Technology Innovation Project of Hunan Province(Grant No.2020GK1010-2020GK1014-4)Distinguished Youth Foun-dation of Hunan Province(Grant No.2019JJ20010)Zhejiang Natural Science Foundation(Grant No.LQ23E020002)Wenzhou Natural Science Foundation(Grant No.G20220019)Cooperation between industry and education project of Ministry of Education(Grant No.220601318235513)State Key Laboratory of Elec-trical Insulation and Power Equipment,Xi'an Jiaotong University(Grant No.EIPE22208).
文摘Sodium-ion batteries(SIBs)are considered as a low-cost complementary or alternative system to prestigious lithium-ion batteries(LIBs)because of their similar working principle to LIBs,cost-effectiveness,and sustainable availability of sodium resources,especially in large-scale energy storage systems(EESs).Among various cathode candidates for SIBs,Na-based layered transition metal oxides have received extensive attention for their relatively large specific capacity,high operating potential,facile synthesis,and environmental benignity.However,there are a series of fatal issues in terms of poor air stability,unstable cathode/electrolyte interphase,and irreversible phase transition that lead to unsatisfactory battery performance from the perspective of preparation to application,outside to inside of layered oxide cathodes,which severely limit their practical application.This work is meant to review these critical problems associated with layered oxide cathodes to understand their fundamental roots and degradation mechanisms,and to provide a comprehensive summary of mainstream modification strategies including chemical substitution,surface modification,structure modulation,and so forth,concentrating on how to improve air stability,reduce interfacial side reaction,and suppress phase transition for realizing high structural reversibility,fast Na+kinetics,and superior comprehensive electrochemical performance.The advantages and disadvantages of different strategies are discussed,and insights into future challenges and opportunities for layered oxide cathodes are also presented.
基金funding support from the National Key Research and Development Program of China(grant no.2020YFB2007400)the National Natural Science Foundation of China(grant no.22075317)the Strategic Priority Research Program(B)(grant no.XDB07030200)of the Chinese Academy of Sciences.
文摘Ni-rich layered oxides have been regarded as the most promising cathode material for next-generation high energy density Li-ion batteries because of their advantages in capacity and cost.However,these cathodes suffer from irreversible structural degradation,fast capacity attenuation as well as seriously reduced safety in their practical applications.Doping strategies with different elements have been employed to address the above issues.In this review,we summarize the research advances of the elemental doping in a Ni-rich layered oxide cathode.The experimental methods and dopant selection rules are briefly introduced.Then we discuss here the effects of the elemental doping from the aspects of the crystal lattice,electronic structure,nanomorphology,and surface stability.In addition,this review surveys the first-principles calculation and advanced structural characterization techniques,which have played important roles in elucidating the structure-performance correlations.Finally,perspectives regarding the future of doping strategy are given.
基金the Australian Institute of Nuclear Science and Engineering (AINSE) Limited for providing financial assistance in the form of a Post Graduate Research Award (PGRA) to carry out this worksupported by the Australian Research Council under grants DP200101862, DP210101486, and FL210100050
文摘High-performance lithium-ion batteries(LIB)are important in powering emerging technologies.Cathodes are regarded as the bottleneck of increasing battery energy density,among which layered oxides are the most promising candidates for LIB.However,a limitation with layered oxides cathodes is the transition metal and Li site mixing,which significantly impacts battery capacity and cycling stability.Despite recent research on Li/Ni mixing,there is a lack of comprehensive understanding of the origin of cation mixing between the transition metal and Li;therefore,practical means to address it.Here,a critical review of cation mixing in layered cathodes has been provided,emphasising the understanding of cation mixing mechanisms and their impact on cathode material design.We list and compare advanced characterisation techniques to detect cation mixing in the material structure;examine methods to regulate the degree of cation mixing in layered oxides to boost battery capacity and cycling performance,and critically assess how these can be applied practically.An appraisal of future research directions,including superexchange interaction to stabilise structures and boost capacity retention has also been concluded.Findings will be of immediate benefit in the design of layered cathodes for high-performance rechargeable LIB and,therefore,of interest to researchers and manufacturers.
基金financial support of the Guangdong Basic and Applied Basic Research Foundation(2019A1515110897 and 2019B1515120028)。
文摘Earth abundant O3-type NaFe_(0.5)Mn_(0.5)O_(2)layered oxide is regarded as one of the most promising cathodes for sodium ion batteries due to its low cost and high energy density.However,its poor structural stability and cycle life strongly impede the practical application.Herein,the dynamic phase evolution as well as charge compensation mechanism of O3-type NaFe_(0.5)Mn_(0.5)O_(2)cathode during sodiation/desodiation are revealed by a systemic study with operando X-ray diffraction and X-ray absorption spectroscopy,high resolution neutron powder diffraction and neutron pair distribution functions.The layered structure experiences a phase transition of O3→P3→OP2→ramsdellite during the desodiation,and a new O3’phase is observed at the end of the discharge state(1.5 V).The density functional theory(DFT)calculations and nPDF results suggest that depletion of Na^(+)ions induces the movement of Fe into Na layer resulting the formation of an inert ramsdellite phase thus causing the loss of capacity and structural integrity.Meanwhile,the operando XAS clarified the voltage regions for active Mn^(3+)/Mn^(4+)and Fe^(3+)/Fe^(4+)redox couples.This work points out the universal underneath problem for Fe-based layered oxide cathodes when cycled at high voltage and highlights the importance to suppress Fe migration regarding the design of high energy O3-type cathodes for sodium ion batteries.
基金financially supported by the National Natural Science Foundation of China(21805007,21825102,22075016,and 21731001)the National Key Research and Development Program of China(2018YFA0703702)+1 种基金the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(CAST,2018QNRC001)the Fundamental Research Funds for the Central Universities(FRF-TP20-020A3)。
文摘Sodium-ion batteries(SIBs) have demonstrated great application prospects in large-scale energy storage systems and low-speed electric vehicles due to the cost effectiveness and abundant resources. Layered transition-metal oxides are recognized as one of the most attractive sodium-ion storage cathode candidates by virtue of their high compositional diversity, environmental friendliness, ease of synthesis, and promising theoretical capacities. The practicability, however, is still limited by the fact that the energy densities of most Na-storage layered oxide cathodes solely using the conventional cationic redox are not comparable to those of the lithium-ion storage counterparts. Recently, the strategy of activating anionic redox(O^(2-)/O^(n-)) which is popular in Li-rich layered materials has been successfully applied in oxide cathodes of SIBs to promote the energy density to a new level. It is interesting to note that excess Na is not the prerequisite to induce anionic redox in sodium oxides, indicating a new mechanism underlying Na-ion materials. Herein, the latest advances on the anionic redox chemistry in layered oxide cathodes for SIBs,including the fundamental theories, triggering strategies, and applicable cathode materials, are comprehensively reviewed.Moreover, the challenges(mainly O_(2) release) facing anionic redox are discussed, and the possible remedies are outlined for future developments toward a highly reversible oxygen usage. We believe that this review can provide a valuable guidance for the exploration of high-energy layered oxide cathode materials of SIBs.
基金Financial supports from the National Natural Science Foundation of China (21822506 and 51761165025)the Tianjin Natural Science Foundation (19JCJQJC62400)the 111 project of B12015。
文摘Anionic redox reaction(ARR) in layered manganese-based oxide cathodes has been considered as an effective strategy to improve the energy density of sodium-ion batteries.Mn-vacancy layered oxides deliver a high ARR-related capacity with small voltage hysteresis,however,they are limited by rapid capacity degradation and poor rate capability,which arise from inferior structure changes due to repeated redox of lattice oxygen.Herein,redox-inactive Ti^(4+)is introduced to substitute partial Mn^(4+)to form Na_(2) Ti_(0.5)Mn_(2.5)O_7(Na_(4/7)[□_(1/7)Ti_(1/7)Mn_(5/7)]O_(2),□ for Mn vacancies),which can effectively restrain unfavorable interlayer gliding of Na2 Mn307 at high charge voltages,as reflected by an ultralow-strain volume variation of 0.11%.There is no irreversible O_(2) evolution observed in Na_(2) Ti_(0.5)Mn_(2.5)O_7 upon charging,which stabilizes the lattice oxygen and ensures the overall structural stability.It exhibits increased capacity retention of 79.1% after 60 cycles in Na_(2) Ti_(0.5)Mn_(2.5)O_7(17.1% in Na_(2) Mn_(3) O_7) and good rate capability(92.1 mAh g^(-1) at 0.5 A g^(-1)).This investigation provides new insights into designing high-performance cathode materials with reversible ARR and structural stability for SIBs.
基金National Natural Science Foundation of China,Grant/Award Numbers:U21A20311,51971090。
文摘High-voltage nickel(Ni)-rich layered oxide-based lithium metal batteries(LMBs)exhibit a great potential in advanced batteries due to the ultra-high energy density.However,it is still necessary to deal with the challenges in poor cyclic and thermal stability before realizing practical application where cycling life is considered.Among many improved strategies,mechanical and chemical stability for the electrode electrolyte interface plays a key role in addressing these challenges.Therefore,extensive effort has been made to address the challenges of electrode-electrolyte interface.In this progress,the failure mechanism of Ni-rich cathode,lithium metal anode and electrolytes are reviewed,and the latest breakthrough in stabilizing electrode-electrolyte interface is also summarized.Finally,the challenges and future research directions of Ni-rich LMBs are put forward.
基金financially supported by the China Postdoctoral Science Foundation(No.2021M700396)the National Natural Science Foundation of China(No.52102206)。
文摘The 3d transition-metal nickel(Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years,from Ni-based alkaline rechargeable batteries,such as nickel-cadmium(Ni-Cd)and nickel-metal hydride(Ni-MH)batteries,to the Ni-rich cathode featured in lithium-ion batteries(LIBs).Ni-based alkaline batteries were first invented in the 1900s,and the well-developed Ni-MH batteries were used on a large scale in Toyota Prius vehicles in the mid-1990s.Around the same time,however,Sony Corporation commercialized the first LIBs in camcorders.After temporally fading as LiCoO_(2) dominated the cathode in LIBs,nickel oxide-based cathodes eventually found their way back to the mainstreaming battery industry.The uniqueness of Ni in batteries is that it helps to deliver high energy density and great storage capacity at a low cost.This review mainly provides a comprehensive overview of the key role of Ni-based cathodes in rechargeable batteries.After presenting the physical and chemical properties of the 3d transition-metal Ni,which make it an optimal cationic redox center in the cathode of batteries,we introduce the structure,reaction mechanism,and modification of nickel hydroxide electrode in Ni-Cd and Ni-MH rechargeable batteries.We then move on to the Ni-based layered oxide cathode in LIBs,with a focus on the structure,issues,and challenges of layered oxides,LiNiO_(2),and LiNi_(1−x−y)Co_(x)Mn_(y)O_(2).The role of Ni in the electrochemical performance and thermal stability of the Ni-rich cathode is highlighted.By bridging the“old”Ni-based batteries and the“modern”Ni-rich cathode in the LIBs,this review is committed to providing insights into the Ni-based electrochemistry and material design,which have been under research and development for over 100 years.This overview would shed new light on the development of advanced Ni-containing batteries with high energy density and long cycle life.
基金supported by the National Natural Science Foundation of China (22179021)the Basic Science Center Project of National Natural Science Foundation of China (51788104)+1 种基金the Natural Science Foundation of Fujian Province (2019J01284)21C Innovation Laboratory Contemporary Amperex Technology Ltd (21C-OP-202011)。
文摘Sodium-ion batteries have the potential to be an alternative to lithium-ion batteries especially for applications such as large-scale grid energy storage. The development of suitable cathode materials is crucial to the commercialization of sodium-ion batteries.Sodium-based layered-type transition metal oxides are promising candidates as cathode materials as they offer decent energy density and are easy to be synthesized. Unfortunately, most layered oxides suffer from poor air-stability, which greatly increases the cost of manufacturing and handling. The air-sensitivity severely limits the development and commercial application of sodium-ion batteries. A review that summarizes the latest understanding and solutions of air-sensitivity is desired. In this review,the background and fundamentals of sodium-based layered-type cathode materials are presented, followed by a discussion on the latest research on air-sensitivity of these materials. The mechanism is complex and involves multiple chemical and physical reactions. Various strategies are shown to alleviate some of the corresponding problems and promote the feasible application of sodium-ion batteries, followed by an outlook on current and future research directions of air-stable cathode materials. It is believed that this review will provide insights for researchers to develop practically relevant materials for sodium-ion batteries.
基金supported by the Science and Technology of Guangxi Zhuang Autonomous Region(Gangxi Special Fund for Scientific Center and Talent Resources,Nos.FA2020011 and FA20210713).
文摘The key to hindering the commercial application of Ni-rich layered cathode is its severe structural and interface degradation during the undesired phase transition(hexagonal to hexagonal(H2→H3)),degenerating from the build-up of mechanical strain and undesired parasitic reactions.Herein,a perovskite Li_(0.35)La_(0.55)TiO_(3)(LLTO)layer is built onto Ni-rich cathodes crystal to induce layered@spinel@perovskite heterostructure to solve the root cause of capacity fade.Intensive exploration based on structure characterizations,in situ X-ray diffraction techniques,and first-principles calculations demonstrate that such a unique heterostructure not only can improve the ability of the host structure to withstand the mechanical strain but also provides fast diffusion channels for lithium ions as well as provides a protective barrier against electrolyte corrosion.Impressively,the LLTO modified LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)cathode manifests an unexpected cyclability with an extremely high-capacity retention of≈94.6%after 100 cycles,which is superior to the pristine LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)(79.8%).Furthermore,this modified electrode also shows significantly enhanced cycling stability even withstanding a high cut-off voltage of 4.6 V.This surface self-reconstruction strategy provides deep insight into the structure/interface engineering to synergistically stabilize structure stability and regulate the physicochemical properties of Ni-rich cathodes,which will also unlock a new perspective of surface interface engineering for layered cathode materials.