期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Investigation of anisotropic strength criteria for layered rock mass
1
作者 Shuling Huang Jinxin Zhang +4 位作者 Xiuli Ding Chuanqing Zhang Gang Han Guoqi Yu Lulu Qu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1289-1304,共16页
Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Moh... Layered rock mass is a type of engineering rock mass with sound mechanical anisotropy,which is generally unfavorable to the stability of underground works.To investigate the strength anisotropy of layered rock,the Mohr-Coulomb and Hoek-Brown criteria are introduced to establish the two transverse isotropic strength criteria based on Jaeger's single weak plane theory and maximum axial strain theory,and parameter determination methods.Furthermore,the sensitivity of strength parameters(K 1,K 2,and K 3)that are used to characterize the anisotropy strength of non-sliding failure involved in the strength criteria and confining pressure are investigated.The results demonstrate that strength parameters K 1 and K 2 affect the strength of layered rock samples at all bedding angles except for the bedding angle of 90°and the angle range that can cause the shear sliding failure along the bedding plane.The strength of samples at any bedding angle decreases with increasing K 1,whereas the opposite is for K 2.Except for bedding angles of 0°and 90°and the bedding angle range that can cause the shear sliding along the bedding plane,K 3 has an impact on the strength of rock samples with other bedding angles that the specimens'strength increases with increase of K 3.In addition,the strength of the rock sample increases as confining pressure rises.Furthermore,the uniaxial and triaxial tests of chlorite schist samples were carried out to verify and evaluate the strength criteria proposed in the paper.It shows that the predicted strength is in good agreement with the experimental results.To test the applicability of the strength criterion,the strength data of several types of rock in the literature are compared.Finally,a comparison is made between the fitting effects of the two strength criteria and other available criteria for layered rocks. 展开更多
关键词 layered rock Strength anisotropy Strength criterion Experimental verification
下载PDF
Face stability analysis of circular tunnels in layered rock masses using the upper bound theorem 被引量:2
2
作者 Jianhong Man Mingliang Zhou +2 位作者 Dongming Zhang Hongwei Huang Jiayao Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第6期1836-1871,共36页
An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model... An analysis of tunnel face stability generally assumes a single homogeneous rock mass.However,most rock tunnel projects are excavated in stratified rock masses.This paper presents a two-dimensional(2D)analytical model for estimating the face stability of a rock tunnel in the presence of rock mass stratification.The model uses the kinematical limit analysis approach combined with the block calculation technique.A virtual support force is applied to the tunnel face,and then solved using an optimization method based on the upper limit theorem of limit analysis and the nonlinear Hoek-Brown yield criterion.Several design charts are provided to analyze the effects of rock layer thickness on tunnel face stability,tunnel diameter,the arrangement sequence of weak and strong rock layers,and the variation in rock layer parameters at different positions.The results indicate that the thickness of the rock layer,tunnel diameter,and arrangement sequence of weak and strong rock layers significantly affect the tunnel face stability.Variations in the parameters of the lower layer of the tunnel face have a greater effect on tunnel stability than those of the upper layer. 展开更多
关键词 Face stability rock tunnel layered rock masses Upper bound solution Hoek—Brown criterion
下载PDF
Restraint effect of partition wall on the tunnel floor heave in layered rock mass
3
作者 YANG Yunyun HUANG Da +2 位作者 ZHONG Zhu LIU Yang PENG Jianbing 《Journal of Mountain Science》 SCIE 2024年第7期2462-2479,共18页
The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered... The presence of horizontal layered rocks in tunnel engineering significantly impacts the stability and strength of the surrounding rock mass,leading to floor heave in the tunnel.This study focused on preparing layered specimens of rock-like material with varying thickness to investigate the failure behaviors of tunnel floors.The results indicate that thin-layered rock mass exhibits weak interlayer bonding,causing rock layers near the surface to buckle and break upwards when subjected to horizontal squeezing.With an increase in the layer thickness,a transition in failure mode occurs from upward buckling to shear failure along the plane,leading to a noticeable reduction in floor heave deformation.The primary cause of significant deformation in floor heave is upward buckling failure.To address this issue,the study proposes the installation of a partition wall in the middle of the floor to mitigate heave deformation of the rock layers.The results demonstrate that the partition wall has a considerable stabilizing effect on the floor,reducing the zone of buckling failure and minimizing floor heave deformation.It is crucial for the partition wall to be sufficiently high to prevent buckling failure and ensure stability.Through simulation calculations on an engineering example,it is confirmed that implementing a partition wall can effectively reduce floor heave and enhance the stability of tunnel floor. 展开更多
关键词 layered rock Floor heave Horizontal compression test Failure behavior Partition wall
下载PDF
A modified smoothed particle hydrodynamics method considering residual stress for simulating failure and its application in layered rock mass
4
作者 XIA Chengzhi SHI Zhenming KOU Huanjia 《Journal of Mountain Science》 SCIE 2024年第6期2091-2112,共22页
Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strat... Residual strength is an indispensable factor in evaluating rock fracture,yet the current Smoothed Particle Hydrodynamics(SPH)framework rarely considers its influence when simulating fracture.An improved cracking strategy considering residual stress in the base bond SPH method was proposed to simulate failures in layered rocks and slopes and verified by experimental results and other simulation methods(i.e.,the discrete element method).Modified Mohr–Coulomb failure criterion was applied to distinguish the mixed failure of tensile and shear.Bond fracture markψwas introduced to improve the kernel function after tensile damage,and the calculation of residual stress after the damage was derived after shear damage.Numerical simulations were carried out to evaluate its performance under different stress and scale conditions and to verify its effectiveness in realistically reproducing crack initiation and propagation and coalescence,even fracture and separation.The results indicate that the improved cracking strategy precisely captures the fracture and failure pattern in layered rocks and rock slopes.The residual stress of brittle tock is correctly captured by the improved SPH method.The improved SPH method that considers residual strength shows an approximately 13%improvement in accuracy for the safety factor of anti-dip layered slopes compared to the method that does not consider residual strength,as validated against analytical solutions.We infer that the improved SPH method is effective and shows promise for applications to continuous and discontinuous rock masses. 展开更多
关键词 Smoothed particle hydrodynamics Cracking strategy Residual stress layered rock Crack propagation
下载PDF
Mechanical Behaviors of Anchorage Interfaces in Layered Rocks with Fractures under Axial Loads
5
作者 Yan Wang Changdong Li +3 位作者 Zhilan Cai Guoqiang Zhu Jiaqing Zhou Wenmin Yao 《Journal of Earth Science》 SCIE CAS CSCD 2023年第2期354-368,共15页
Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering.Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects... Rock bolts are widely employed as an effective and efficient reinforcement method in geotechnical engineering.Sandwich composite structures formed by hard rock and weak rock are often encountered in practical projects.Furthermore,the spatial structure of the rock mass has a direct influence on the effect of the anchorage support.To investigate the impact of rock mass structure on the mechanical characteristics of anchorage interfaces,pull-out tests on reinforced specimens with different mudstone thicknesses and fracture dip angles are conducted.The experimental results indicate that the percentage of mudstone content and fracture dip angle have a significant influence on the pullout load of the samples.A weaker surrounding rock results in a lower peak load and a longer critical anchorage length,and vice versa.The results also show that 70%mudstone content can be considered a critical condition for impacting the peak load.Specifically,the percentage of mudstone content has a limited influence on the variation in the peak load when it exceeds 70%.Optical fiber deformation results show that compared to the rock mass with fracture dip angles of 0°and 60°,the rock mass with a fracture dip angle of 30°has a more uniformly distributed force at the anchorage interface.When the fracture dip angle exceeds 60°,the dip angle is no longer a key indicator of peak load.The accuracy of the experimentally obtained load-displacement curves is further verified although numerical simulation using the discrete element method. 展开更多
关键词 layered rocks grouted rockbolts grout/rock interface distributed optical fiber mechanical behavior
原文传递
Kernel broken smooth particle hydrodynamics method for crack propagation simulation applied in layered rock cells and tunnels
6
作者 Chengzhi Xia Zhenming Shi +1 位作者 Hongchao Zheng Xiaohan Wu 《Underground Space》 SCIE EI CSCD 2023年第3期55-75,共21页
Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and d... Understanding the cracking process of layered tunnels requires a high-fidelity method.Improved smooth particle hydrodynamics(SPH),termed kernel broken SPH(KBSPH),was implemented to simulate the crack propagation and deformation of layered rock cells and field layered tunnels with dip angles of 0°–90°,and the results were compared with those of the laboratory tests.Three attempts,including the bedding angle,interlayer distance,and lateral pressure coefficient,were made to investigate the crack propagation and deformation of layered tunnels.Finally,the pros and cons of the KBSPH method applied in the rock field were compared with those of other methods.The results indicate that the KBSPH can explicitly reproduce crack propagation by improving the kernel function with a totally damaged symbol,and the deformation responses have been captured reasonably.We infer that this method is effective and rapid in crack propagation and large deformation simulation for other types of rock tunnels. 展开更多
关键词 Smooth particle hydrodynamics Kernel broken layered rock tunnel Crack propagation
原文传递
Crack evolution of soft–hard composite layered rock-like specimens with two fissures under uniaxial compression 被引量:2
7
作者 Dong ZHOU Yicheng YE +2 位作者 Nanyan HU Weiqi WANG Xianhua WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第6期1372-1389,共18页
Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures und... Acoustic emission and digital image correlation were used to study the spatiotemporal evolution characteristics of crack extension of soft and hard composite laminated rock masses(SHCLRM)containing double fissures under uniaxial compression.The effects of different rock combination methods and prefabricated fissures with different orientations on mechanical properties and crack coalescence patterns were analyzed.The characteristics of the acoustic emission source location distribution,and frequency changes of the crack evolution process were also investigated.The test results show that the damage mode of SHCLRM is related to the combination mode of rock layers and the orientation of fractures.Hard layers predominantly produce tensile cracks;soft layers produce shear cracks.The first crack always sprouts at the tip or middle of prefabricated fractures in hard layers.The acoustic emission signal of SHCLRM with double fractures has clear stage characteristics,and the state of crack development can be inferred from this signal to provide early warning for rock fracture instability.This study can provide a reference for the assessment of the fracture development status between adjacent roadways in SHCLRM in underground mines,as well as in roadway layout and support. 展开更多
关键词 soft−hard composite layered rock mass double cracks crack evolution acoustic emission digital image correlation
原文传递
Physical model test and numerical simulation on the failure mechanism of the roadway in layered soft rocks 被引量:10
8
作者 Xiaoming Sun Chengwei Zhao +3 位作者 Yong Zhang Feng Chen Shangkun Zhang Kaiyuan Zhang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第2期291-302,共12页
To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employ... To explore the failure mechanism of roadway in layered soft rocks,a physical model with the physically finite elemental slab assemblage(PFESA)method was established.Infrared thermography and a video camera were employed to capture thermal responses and deformation.The model results showed that layered soft roadway suffered from large deformation.A three-dimensional distinct element code(3 DEC)model with tetrahedral blocks was built to capture the characteristics of roadway deformation,stress,and cracks.The results showed two failure patterns,layer bending fracture and layer slipping after excavation.The layer bending fracture occurred at positions where the normal direction of layers pointed to the inside of the roadway and the layer slipping occurred in the ribs.Six schemes were proposed to investigate the effects of layered soft rocks.The results showed that the deformation of ribs was obviously larger than that of the roof and floor when the roadway passed through three types of strata.When the roadway was completely in a coal seam,the change of deformation in ribs was not obvious,while the deformation in the roof and floor increased obviously.These results can provide guidance for excavation and support design of roadways in layered soft rocks. 展开更多
关键词 Failure mechanism Physical model test 3DEC layered soft rocks Large deformation
下载PDF
Time-dependent squeezing deformation mechanism of tunnels in layered soft-rock stratum under high geo-stress 被引量:1
9
作者 CHEN Zi-quan HE Chuan +1 位作者 WANG Jun MA Chun-chi 《Journal of Mountain Science》 SCIE CSCD 2021年第5期1371-1390,共20页
Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of ... Large squeezing deformation of layered soft rock tunnel under high geo-stress has a significant time-dependent deformation behavior.In this paper,we studied the deformation mechanism during the construction period of deep-buried softrock tunnel by means of a combination of field observations and a numerical method.First,a new classification criterion for large deformations based on the power exponent variation law between the deformation and the strength-stress ratio is proposed.Then,the initial damage tensor reflecting the bedding plane(joint)distribution and an equivalent damage evolution equation derived from the viscoplastic strain are introduced based on the geometric research method,i.e.,a new rheological damage model(RDL model)of layered soft rock is established consisting of elastic,viscous,viscoelastic,viscoplastic and plastic elements.A field test was conducted on the Maoxian tunnel in Sichuan province,southwestern China,which is in broken phyllite(layered soft rock)under high geo-stress.The tunnel has experienced large deformation due to serious squeezing pressure,thus we adopted double primary support method to overcome the supporting structure failure problems.The rheological parameters of phyllite in the Maoxian tunnel were recognized by using SA-PSO optimization,and the RDL model does a good job in describing the time-dependent deformation behavior of a layered soft-rock tunnel under high geo-stress.Thus,the RDL model was used to investigate the supporting effect and bearing mechanism of the double primary support method.Compared with the single primary support method,the surrounding rock pressure,secondary lining force,surrounding rock deformation,and the depth of the damage to the rock mass was reduced by 40%-60%after the double primary support method was used. 展开更多
关键词 Deformation mechanism layered soft rock tunnel High geostress Large squeezing deformation Rheological damage model
下载PDF
Three-Dimensional Collapse Analysis for a Shallow Cavity in Layered Strata Based on Upper Bound Theorem 被引量:1
10
作者 Hongtao Wang Ping Liu +3 位作者 Lige Wang Chi Liu Xin Zhang Luyao Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期375-391,共17页
Layered rock strata are observed to be common during the excavation of tunnels or cavities,and may significantly affect the deformation and failure characteristics of surrounding rock masses due to various complex for... Layered rock strata are observed to be common during the excavation of tunnels or cavities,and may significantly affect the deformation and failure characteristics of surrounding rock masses due to various complex forms and mechanical properties.In this paper,we propose a three-dimensional axisymmetric velocity field for roof collapse of shallow cavities in multi rock layers,by considering the influences of roof cross-section shapes,supporting pressure,ground overload,etc.The internal energy dissipation rate and work rates of external forces corresponding to the velocity field are computed by employing the Hoek-Brown strength criterion and its associated flow rule.Further,the equations of the collapse surfaces and the corresponding weight of collapsing rock masses are derived on the basis of upper bound theorem.Furthermore,we validate the proposed method by comparing the results of numerical calculations and existing research findings.The change laws of the collapse range under varying parameters are obtained for the presence of rectangular and spherical cavities.We also find that the three-dimensional mechanism is relatively safer for engineering designing actually,compared with the traditional two-dimensional mechanism.All these conclusions may provide workable guidelines for the support design of shallow cavities in layered rock strata practically. 展开更多
关键词 Shallow cavity three-dimensional collapse layered rock strata UPPER
下载PDF
Tomography of the dynamic stress coefficient for stress wave prediction in sedimentary rock layer under the mining additional stress 被引量:6
11
作者 Wenlong Shen Guocang Shi +3 位作者 Yungang Wang Jianbiao Bai Ruifeng Zhang Xiangyu Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第4期653-663,共11页
In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock ... In this study,the tomography of dynamic stress coefficient(TDSC)was established based on a mechanical model of stress wave propagation in bedding planes and a mathematical model of the stress wave attenuation in rock masses.The reliability of the TDSC was verified by a linear bedding plane model and field monitoring.Generally,the TDSC in the dynamic stress propagation of bedding planes increases with the following conditions:(1)the increase of the normal stiffness of the bedding plane,(2)the increase of the incident angle of the stress wave,(3)the decrease of the incident frequency of the stress wave,or(4)the growth of three ratios(the ratios of rock densities,elastic moduli,and the Poisson’s ratios)of rocks on either side of bedding planes.The additional stress weakens TDSC linearly and slowly during the stress wave propagation in bedding planes,and the weakening effect increases with the growth of the three ratios.Besides,the TDSC decreases exponentially in the rock mass as propagation distance increases.In a field case,the TDSC decreases significantly as vertical and horizontal distances increase and its wave range increases as vertical distance increases in the sedimentary rock layers. 展开更多
关键词 Tomography of the dynamic stress COEFFICIENT Stress wave attenuation Mining additional stress Sedimentary rock layer
下载PDF
Modification of rock mass rating system:Interbedding of strong and weak rock layers 被引量:5
12
作者 Mohammad Mohammadi Mohammad Farouq Hossaini 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第6期1165-1170,共6页
Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The typ... Rock mass classification systems are the very important part for underground projects and rock mass rating(RMR) is one of the most commonly applied classification systems in numerous civil and mining projects. The type of rock mass consisting of an interbedding of strong and weak layers poses difficulties and uncertainties for determining the RMR. For this, the present paper uses the concept of rock bolt supporting factor(RSF) for modification of RMR system to be used in such rock mass types. The proposed method also demonstrates the importance of rock bolting practice in such rock masses. The geological parameters of the Shemshak Formation of the Alborz Tunnel in Iran are used as case examples for development of the theoretical approach. 展开更多
关键词 rock mass rating(RMR) Strong and weak rock layers Interbedding rock bolt supporting factor(RSF) Alborz tunnel
下载PDF
The formation of orthogonal joint systems and cuboidal blocks:New insights gained from flat-lying limestone beds in the region of Havre-Saint-Pierre(Quebec,Canada)
13
作者 Shaocheng Ji Yvéric Rousseau +1 位作者 Denis Marcotte Noah John Phillips 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3079-3093,共15页
Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat... Vertical orthogonal joints are a common feature in shallow crustal rocks.There are several competing theories for their formation despite the ubiquity.We examined the exceptional exposures of orthogonal joints in flat-lying Ordovician limestone beds from the Havre-Saint-Pierre Region in Quebec,Canada(north shore of Saint-Lawrence River)to test conceptual models of joint formation in a natural setting.In the region,the spacing of cross-joints is consistently larger than the spacing of systematic joints by a factor of 1.5 approximately.The joint-spacing-to-bed-thickness ratios(s/t)are much larger in these beds(s/t=4.3 for systematic joints,and 6.4 for cross-joints)than those in higher strained strata along the south shore of the Saint-Lawrence River(s/t=1),highlighting the effect of tectonic strain in decreasing fracture spacing and block size.The high values of s/t indicate that cross-joint formation was unlikely caused by a switch from compression to tension once a critical s/t ratio for systematic joints was reached(as hypothesized in previous studies).We proposed a new model for the formation of orthogonal joint systems where the principal stress axes locally switch during the formation of systematic fractures.The presence of ladder-shaped orthogonal joints suggests a state of effective stress withσ_(1)^(∗)≫0>σ_(2)^(∗)>σ_(3)^(∗)and whereσ_(2)^(∗)-σ_(3)^(∗)is within the range of fracture strength variability at the time of fracture.This research provides a new mechanical model for the formation of orthogonal joint systems and cuboidal blocks. 展开更多
关键词 Plato's cuboids Orthogonal joints Fracture spacing LIMESTONE layered rock mechanics Appalachian geology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部