It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species...It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species (Solidago canadensis L.) in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments. Three Pb levels (control, 300, and 600 mg/kg soil) were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows. Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species ( Glomus mosseae, Glomus versiform, Glomus diaphanum, Glomus geosporum, and Glomus etunicatum). The ^15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants. The results showed that S. canadensis was highly dependent on mycorrhizae. The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization (root length colonized, RLC%) but did not affect spore numbers, N (including total N and ^15N) and P uptake. The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments. The Pb was mostly sequestered in belowground of plant (root and rhizome). The results suggest that the high efficiency of mycorrhizae on nutrient uptake might give S. canadensis a great advantage over native species in Pb polluted soils.展开更多
The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential vale...The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.展开更多
Under the surface peeling of Cu- Fe- P lead frame alloy larger Fe particles were observed by energy dispersive spectroscopy. By using the large strain two-dinension plane strain model and elastic plastic finite elemen...Under the surface peeling of Cu- Fe- P lead frame alloy larger Fe particles were observed by energy dispersive spectroscopy. By using the large strain two-dinension plane strain model and elastic plastic finite element method, the cause for peeling damage of Cu-Fe-P lead frame aUoy was investigated. The results show that when the content of Fe particles is more than 30% at local Fe-rich area the intense stress coacentration in the Fe particle would make the Fe particle broken up. The high equivalent stress mutation and the mismatch of equivalent strain 10% at the two sides of intefrace make it easy to develop the crack and peeling damage on finish rolling. The larger Fe particles in the Cu-Fe-P alloy should be avoided.展开更多
A circuit system of on\|chip BP(Back\|Propagation) learning neural network with programmable neurons has been designed,which comprises a feedforward network,a n error back\|propagation network and a weight updating ci...A circuit system of on\|chip BP(Back\|Propagation) learning neural network with programmable neurons has been designed,which comprises a feedforward network,a n error back\|propagation network and a weight updating circuit.It has the merit s of simplicity,programmability,speediness,low power\|consumption and high densi ty.A novel neuron circuit with programmable parameters has been proposed.It gene rates not only the sigmoidal function but also its derivative.HSPICE simulations are done to a neuron circuit with level 47 transistor models as a standard 1 2 μm CMOS process.The results show that both functions are matched with their res pective ideal functions very well.The non\|linear partition problem is used to v erify the operation of the network.The simulation result shows the superior perf ormance of this BP neural network with on\|chip learning.展开更多
A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub&...A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub>3</sub>HT and PC<sub>16</sub>BM type solar cells. It was demonstrated that annealing and doping of electron transport layer influenced the overall organic solar cells performance. Anneals of ~ 150?C provided the highest device performance. Compared to the undoped zinc oxide, the device with yttrium doped zinc oxide layers showed improved efficiency by about 30%. Furthermore an equivalent circuit was proposed to understand the connection between the electrical and optical characteristics of the device. Comparisons between the simulated and experimental current-voltage(I-V) curves displayed only a 1.2% variation between the curves. Clearly, our experimental and simulated studies provide new insight on the equivalent circuit models for inverted organic solar cells and further improvement on photovoltaic efficiency.展开更多
基金This work was supported by the National Basic Research Program(973)of China(No.2006CB 100206)the Zhejiang Provincial Natural Science Foundation of China(No.R505024,Y307418).
文摘It is less known whether and how soil metal lead (Pb) impacts the invasion of exotic plants. A greenhouse experiment was conducted to estimate the effects of lead on the growth and mycorrhizae of an invasive species (Solidago canadensis L.) in a microcosm system. Each microcosm unit was separated into HOST and TEST compartments by a replaceable mesh screen that allowed arbuscular mycorrhizal (AM) fungal hyphae rather than plant roots to grow into the TEST compartments. Three Pb levels (control, 300, and 600 mg/kg soil) were used in this study to simulate ambient soil and two pollution sites where S. canadensis grows. Mycorrhizal inoculum comprised five indigenous arbuscular mycorrhizal fungal species ( Glomus mosseae, Glomus versiform, Glomus diaphanum, Glomus geosporum, and Glomus etunicatum). The ^15N isotope tracer was used to quantify the mycorrhizally mediated nitrogen acquisition of plants. The results showed that S. canadensis was highly dependent on mycorrhizae. The Pb additions significantly decreased biomass and arbuscular mycorrhizal colonization (root length colonized, RLC%) but did not affect spore numbers, N (including total N and ^15N) and P uptake. The facilitating efficiency of mycorrhizae on nutrient acquisition was promoted by Pb treatments. The Pb was mostly sequestered in belowground of plant (root and rhizome). The results suggest that the high efficiency of mycorrhizae on nutrient uptake might give S. canadensis a great advantage over native species in Pb polluted soils.
文摘The effect of the valence band tail width on the open circuit voltage of P3HT:PCBM bulk heterojunction solar cell is investigated by using the AMPS-1D computer program. An effective medium model with exponential valence and conduction band tail states is used to simulate the photovoltaic cell. The simulation result shows that the open circuit voltage depends Iinearly on the logarithm of the generation rate and the slope depends on the width of the valence band tail. The open circuit voltage decreases with the increasing width of the band tail. The dark and light ideality factors increase with the width of the valence band tail.
基金Funded by the National "863" Plan of China ( No.2002AA331112) ,the Doctorate Foundation of Northwestern Poly-technical University,andthe Science Research Foundation of HenanUniversity of Science and Technology(No.2006ZY041)
文摘Under the surface peeling of Cu- Fe- P lead frame alloy larger Fe particles were observed by energy dispersive spectroscopy. By using the large strain two-dinension plane strain model and elastic plastic finite element method, the cause for peeling damage of Cu-Fe-P lead frame aUoy was investigated. The results show that when the content of Fe particles is more than 30% at local Fe-rich area the intense stress coacentration in the Fe particle would make the Fe particle broken up. The high equivalent stress mutation and the mismatch of equivalent strain 10% at the two sides of intefrace make it easy to develop the crack and peeling damage on finish rolling. The larger Fe particles in the Cu-Fe-P alloy should be avoided.
基金Project Supported by National N atural Science Foundation of China!( U nder Grant No.696360 30 )
文摘A circuit system of on\|chip BP(Back\|Propagation) learning neural network with programmable neurons has been designed,which comprises a feedforward network,a n error back\|propagation network and a weight updating circuit.It has the merit s of simplicity,programmability,speediness,low power\|consumption and high densi ty.A novel neuron circuit with programmable parameters has been proposed.It gene rates not only the sigmoidal function but also its derivative.HSPICE simulations are done to a neuron circuit with level 47 transistor models as a standard 1 2 μm CMOS process.The results show that both functions are matched with their res pective ideal functions very well.The non\|linear partition problem is used to v erify the operation of the network.The simulation result shows the superior perf ormance of this BP neural network with on\|chip learning.
文摘A low temperature sol-gel process was used to fabricate zinc-oxide and yttrium-doped zinc oxide layers. These zinc-oxide and yttrium-doped ZnO films were used as electron transport layers in conjunction with P<sub>3</sub>HT and PC<sub>16</sub>BM type solar cells. It was demonstrated that annealing and doping of electron transport layer influenced the overall organic solar cells performance. Anneals of ~ 150?C provided the highest device performance. Compared to the undoped zinc oxide, the device with yttrium doped zinc oxide layers showed improved efficiency by about 30%. Furthermore an equivalent circuit was proposed to understand the connection between the electrical and optical characteristics of the device. Comparisons between the simulated and experimental current-voltage(I-V) curves displayed only a 1.2% variation between the curves. Clearly, our experimental and simulated studies provide new insight on the equivalent circuit models for inverted organic solar cells and further improvement on photovoltaic efficiency.