This study investigates the impact of silicon(Si)on the corrosion resistance and post-corrosion toughness of ferrite/martensitic(F/M)steels in a liquid lead-bismuth eutectic(LBE)environment.Corrosion tests were perfor...This study investigates the impact of silicon(Si)on the corrosion resistance and post-corrosion toughness of ferrite/martensitic(F/M)steels in a liquid lead-bismuth eutectic(LBE)environment.Corrosion tests were performed on HT-9 and EP-823(1.17 wt%Si)steels at 550℃for 1000 h under oxygen-controlled conditions.The resulting oxide layer consisted of an outer magnetite layer,a spinel layer and an inner oxide zone(IOZ).A Si-rich oxide layer was identified within the spinel and IOZ layers of EP-823,which slowed the growth rate of the oxide layer,enhanced antioxidant performance,and inhibited dissolution corrosion by the LBE.Post-corrosion mechanical properties were evaluated using a small punch test.Results showed a significant reduction in HT-9's toughness within 240 h of corrosion,while EP-823 exhibited increased brittleness after 500 h due to Si-promoted carbide and Laves phase precipitation,significantly reducing its toughness.展开更多
The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance ...The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic(LBE).The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400℃ for 500 h was investigated.Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE,consisting of an outer magnetite layer and an inner Fe-Cr spinel layer.Meanwhile,the amorphous coating with a high glass transition temperature(Tg=550℃)and crystallization temperature(T_(x)=600℃)exhibited dramatically enhanced thermal stability and corrosion resistance.No visible LBE penetration was observed,although small amounts of Fe_(3)O_(4),Cr_(2)O_(3),and PbO were found on the coating surface.In addition,the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion.The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.展开更多
Classical molecular dynamics simulations with global neural network machine learning potential are used to study early stage oxidation and dissolution behaviors of bcc Fe surfaces contacting with stagnant oxygen disso...Classical molecular dynamics simulations with global neural network machine learning potential are used to study early stage oxidation and dissolution behaviors of bcc Fe surfaces contacting with stagnant oxygen dissolved liquid leadbismuth eutectic(LBE-O).Both static and dynamic simulation results indicate that the early stage oxidation and dissolution behaviors of bcc Fe show strong orientation dependence under the liquid LBE environments,which may explain the experimental observations of uneven interface between iron-based materials and liquid LBE.Our investigations show that it is the delicate balance between the oxide growth and metal dissolution that leads to the observed corrosion anisotropy for bcc Fe contacting with liquid LBE-O.展开更多
Studies of synergetic irradiation effects and liquid lead-bismuth eutectic(LBE) corrosion/embrittlement effects on ferritic/martensitic(F/M) steels are of great importance for developing high power spallation neutron ...Studies of synergetic irradiation effects and liquid lead-bismuth eutectic(LBE) corrosion/embrittlement effects on ferritic/martensitic(F/M) steels are of great importance for developing high power spallation neutron targets(>1 M W) such as the European Spallation Source(ESS) and Accelerator Driven System(ADS) facilities that can be used for transmuting long-lifetime radioactive wastes. Liquid LBE(45Pb-55Bi,in terms of mass fraction) has been selected as the candidate target material in high power spallation neutron targets due to its favourable thermal,physical & chemical properties,and to its high spallation neutron yield. 9Cr F/M steels such as T91(9Cr1M oVNb,in terms of mass fraction) have been chosen as the structural material for the targets due to their good mechanical properties and good resistance to irradiation induced swelling in fission neutron irradiation environments. For developing high power spallation neutron targets,behaviors of F/M steels in spallation neutron target irradiation environments and LBE corrosion/embrittlement effects have been extensively studied. However,many open questions have not been answered. The aim of this paper is to describe the present research situation on this topic. The obtained experimental data about LBE embrittlement effects on F/M steels is summarized and the influence of different parameters involved is analyzed to understand the influence effect on LBE embrittlement effect of F/M s.展开更多
To better understand the stainless steel corrosion behavior in lead-bismuth eutectic flow,the iron mass transfer phenomenon on roughened walls under various pipe flow conditions were numerically investigated.Low Reyno...To better understand the stainless steel corrosion behavior in lead-bismuth eutectic flow,the iron mass transfer phenomenon on roughened walls under various pipe flow conditions were numerically investigated.Low Reynolds number k-εmodel was applied in CFD simulation of mass transfer,in which the Reynolds number covers from 5×10^(3) to 1×10^(5).展开更多
The performance degradation of structural materials caused by corrosion of the coolant lead-bismuth eutectic(LBE)alloy has become one of the most serious challenges facing the construction of lead-cooled fast reactors...The performance degradation of structural materials caused by corrosion of the coolant lead-bismuth eutectic(LBE)alloy has become one of the most serious challenges facing the construction of lead-cooled fast reactors^([13]).Grain re nement is a way to improve the corrosion resistance of steels[4-8].However,its e ect on the LBE corrosion behavior of steels is still very little studied.In this study.展开更多
The Lead-cooled Fast Reactor(LFR)is one of the fourth-generation nuclear energy systems with excellent development prospects.Liquid lead-bismuth eutectic(LBE)(44.5wt.%Pb+55.5wt.%Bi)appears to be a promising candidate ...The Lead-cooled Fast Reactor(LFR)is one of the fourth-generation nuclear energy systems with excellent development prospects.Liquid lead-bismuth eutectic(LBE)(44.5wt.%Pb+55.5wt.%Bi)appears to be a promising candidate as a coolant for LFR due to its low melting point of 397 K,fast heat removing from the target,good neutron yield and low vapour pressure.However,the liquid LBE is corrosive to both austenitic steels and ferriticmartensitic steels.展开更多
Lead-bismuth eutectic(LBE)is a promising candidate material of core coolants and high-power spallation targets of accelerator driven system(ADS)for transmutation of radioactive wastes and of coolants of fast reactors(...Lead-bismuth eutectic(LBE)is a promising candidate material of core coolants and high-power spallation targets of accelerator driven system(ADS)for transmutation of radioactive wastes and of coolants of fast reactors(FRs).展开更多
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ...Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.展开更多
The tensile tests of T91 and T91Si steels at 200-450℃in air and at 350℃in oxygen-depleted liquid lead-bismuth eutectic(LBE)environment with strain rate of 1×10^(-5)-5×10^(-3)were performed.Results show tha...The tensile tests of T91 and T91Si steels at 200-450℃in air and at 350℃in oxygen-depleted liquid lead-bismuth eutectic(LBE)environment with strain rate of 1×10^(-5)-5×10^(-3)were performed.Results show that the activation energy of T91 steel is 103.45-246.76 kJ/mol and that of T91Si steel is 146.98-172.11 kJ/mol when Portevin-Le Chatelie(PLC)phenomenon occurs.The elongation reduction of T91 steel at 350℃is not specific to LBE environment,whereas the presence of LBE promotes crack initiation and propagation and affects the elongation of the material in the necking stage.With Si addition,the elongation,especially the uniform elongation at 350℃in LBE environment,improves,and the tendency toward crack propagation in T91 steel after slow tensile necking is reduced.The PLC phenomenon can be seen in both T91 and T91Si steels at high temperatures owing to the dynamic strain aging(DSA).The temperature ranges are different when DSA occurs,with 300-350℃and 250-350℃for T91 and T91Si steels,respectively.展开更多
Investigations on entropy generation and thermal irreversibility analysis are conducted for liquid lead-bismuth eutectic(LBE)in an annular pipe.To find better performance in convective heat transfer,the computational ...Investigations on entropy generation and thermal irreversibility analysis are conducted for liquid lead-bismuth eutectic(LBE)in an annular pipe.To find better performance in convective heat transfer,the computational fluid dynamics(CFD)code based on the finite volume method(FVM)is adopted to solve this problem.The elevated temperature LBE flows in the annular pipe,and four types of heat flux,including constant,linear increase and decrease,and parabolic distributions are imposed at the inside wall of the annular pipe.The investigations are conducted for the specific average heat input of 200 kW/m^(2),and the different Peclet number Pe is set from 1200 to 3200.The SST k-ωturbulent model and Cheng-Tak Prt model are adopted.The mesh independence validation and models verification are also conducted and the maximum Nu error is 5.43%compared with previous experimental correlations.The results from the local and system scales,respectively,including volumetric dimensionless entropy generation,Ns,Be,and Ep,are discussed.The results indicate that the viscous friction and heat transfer caused by entropy generation can be found in the viscous sub-layer and buffer layer respectively.Heat transfer is the primary factor that leads to irreversible losses.Besides,the results show that the best thermodynamic performance occurs under parabolic distributed heat flux in the research scope.展开更多
The cavitation erosion of weld joint and base metal of China low activation martensitic(CLAM)steel in liquid lead-bismuth eutectic alloy(LBE)at 550°C was investigated to simulate the cavitation erosion of the...The cavitation erosion of weld joint and base metal of China low activation martensitic(CLAM)steel in liquid lead-bismuth eutectic alloy(LBE)at 550°C was investigated to simulate the cavitation erosion of the first wall and the nuclear main pump impeller in the accelerator driven sub-critical system(ADS).A suit of ultrasonic cavitation facility was self-designed to study the cavitation erosion.By studying the surface micro topography,roughness and mean pit depth of the tested specimens,it was found that some crater clusters and large scale cracks appeared on the tested specimen surface after the formation of numerous single craters,and the base metal exhibited much better cavitation erosion resistance than the weld bead due to the difference in their mechanical properties and microstructures.In addition,by comparing the results of static corrosion and cavitation erosion,it could be concluded that the cavitation erosion and the dissolution and oxidation corrosion in liquid LBE would accelerate mutually.展开更多
Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in che...Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.展开更多
Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other ...Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan.展开更多
The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)...The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations.展开更多
Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are ...Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors.展开更多
A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were ch...A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results.展开更多
Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a...Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.展开更多
As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application pote...As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.展开更多
In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements ha...In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values.展开更多
基金supported by the National Natural Science Foundation of China(No.52301121).
文摘This study investigates the impact of silicon(Si)on the corrosion resistance and post-corrosion toughness of ferrite/martensitic(F/M)steels in a liquid lead-bismuth eutectic(LBE)environment.Corrosion tests were performed on HT-9 and EP-823(1.17 wt%Si)steels at 550℃for 1000 h under oxygen-controlled conditions.The resulting oxide layer consisted of an outer magnetite layer,a spinel layer and an inner oxide zone(IOZ).A Si-rich oxide layer was identified within the spinel and IOZ layers of EP-823,which slowed the growth rate of the oxide layer,enhanced antioxidant performance,and inhibited dissolution corrosion by the LBE.Post-corrosion mechanical properties were evaluated using a small punch test.Results showed a significant reduction in HT-9's toughness within 240 h of corrosion,while EP-823 exhibited increased brittleness after 500 h due to Si-promoted carbide and Laves phase precipitation,significantly reducing its toughness.
基金financially supported by the National Natural Science Foundation of China (Nos. 52061135207, 51871016, 51921001, 5197011039, 5197011018, and U20b200318)the China Nuclear Power Technology Research Institute Co., Ltd
文摘The Fe_(949.7)Cr_(18)Mn_(1.9)Mo_(7.4)W_(1.6)B_(15.2)C_(3.8)Si_(2) amorphous coating was deposited on T91 steel substrate by using the high-velocity oxygen fuel(HVOF)spray technique to enhance the corrosion resistance of T91 stainless steel in liquid lead-bismuth eutectic(LBE).The corrosion behavior of the T91 steel and coating exposed to oxygen-saturated LBE at 400℃ for 500 h was investigated.Results showed that the T91 substrate was severely corroded and covered by a homogeneously distributed dual-layer oxide on the interface contacted to LBE,consisting of an outer magnetite layer and an inner Fe-Cr spinel layer.Meanwhile,the amorphous coating with a high glass transition temperature(Tg=550℃)and crystallization temperature(T_(x)=600℃)exhibited dramatically enhanced thermal stability and corrosion resistance.No visible LBE penetration was observed,although small amounts of Fe_(3)O_(4),Cr_(2)O_(3),and PbO were found on the coating surface.In addition,the amorphicity and interface bonding of the coating layer remained unchanged after the LBE corrosion.The Fe-based amorphous coating can act as a stable barrier layer in liquid LBE and have great application potential for long-term service in LBE-cooled fast reactors.
基金the National Natural Science Foundation of China(Grant No.U1832206).
文摘Classical molecular dynamics simulations with global neural network machine learning potential are used to study early stage oxidation and dissolution behaviors of bcc Fe surfaces contacting with stagnant oxygen dissolved liquid leadbismuth eutectic(LBE-O).Both static and dynamic simulation results indicate that the early stage oxidation and dissolution behaviors of bcc Fe show strong orientation dependence under the liquid LBE environments,which may explain the experimental observations of uneven interface between iron-based materials and liquid LBE.Our investigations show that it is the delicate balance between the oxide growth and metal dissolution that leads to the observed corrosion anisotropy for bcc Fe contacting with liquid LBE-O.
基金Funded by the National Natural Science Foundation of China(No.91226203)
文摘Studies of synergetic irradiation effects and liquid lead-bismuth eutectic(LBE) corrosion/embrittlement effects on ferritic/martensitic(F/M) steels are of great importance for developing high power spallation neutron targets(>1 M W) such as the European Spallation Source(ESS) and Accelerator Driven System(ADS) facilities that can be used for transmuting long-lifetime radioactive wastes. Liquid LBE(45Pb-55Bi,in terms of mass fraction) has been selected as the candidate target material in high power spallation neutron targets due to its favourable thermal,physical & chemical properties,and to its high spallation neutron yield. 9Cr F/M steels such as T91(9Cr1M oVNb,in terms of mass fraction) have been chosen as the structural material for the targets due to their good mechanical properties and good resistance to irradiation induced swelling in fission neutron irradiation environments. For developing high power spallation neutron targets,behaviors of F/M steels in spallation neutron target irradiation environments and LBE corrosion/embrittlement effects have been extensively studied. However,many open questions have not been answered. The aim of this paper is to describe the present research situation on this topic. The obtained experimental data about LBE embrittlement effects on F/M steels is summarized and the influence of different parameters involved is analyzed to understand the influence effect on LBE embrittlement effect of F/M s.
文摘To better understand the stainless steel corrosion behavior in lead-bismuth eutectic flow,the iron mass transfer phenomenon on roughened walls under various pipe flow conditions were numerically investigated.Low Reynolds number k-εmodel was applied in CFD simulation of mass transfer,in which the Reynolds number covers from 5×10^(3) to 1×10^(5).
文摘The performance degradation of structural materials caused by corrosion of the coolant lead-bismuth eutectic(LBE)alloy has become one of the most serious challenges facing the construction of lead-cooled fast reactors^([13]).Grain re nement is a way to improve the corrosion resistance of steels[4-8].However,its e ect on the LBE corrosion behavior of steels is still very little studied.In this study.
文摘The Lead-cooled Fast Reactor(LFR)is one of the fourth-generation nuclear energy systems with excellent development prospects.Liquid lead-bismuth eutectic(LBE)(44.5wt.%Pb+55.5wt.%Bi)appears to be a promising candidate as a coolant for LFR due to its low melting point of 397 K,fast heat removing from the target,good neutron yield and low vapour pressure.However,the liquid LBE is corrosive to both austenitic steels and ferriticmartensitic steels.
文摘Lead-bismuth eutectic(LBE)is a promising candidate material of core coolants and high-power spallation targets of accelerator driven system(ADS)for transmutation of radioactive wastes and of coolants of fast reactors(FRs).
基金financially supported by the Original Exploration Project of the National Natural Science Foundation of China(No.52150079)the National Natural Science Foundation of China(Nos.U22A20130,U2004215,and 51974280)+1 种基金the Natural Science Foundation of Henan Province of China(No.232300421196)the Project of Zhongyuan Critical Metals Laboratory of China(Nos.GJJSGFYQ202304,GJJSGFJQ202306,GJJSGFYQ202323,GJJSGFYQ202308,and GJJSGFYQ202307)。
文摘Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy.
文摘The tensile tests of T91 and T91Si steels at 200-450℃in air and at 350℃in oxygen-depleted liquid lead-bismuth eutectic(LBE)environment with strain rate of 1×10^(-5)-5×10^(-3)were performed.Results show that the activation energy of T91 steel is 103.45-246.76 kJ/mol and that of T91Si steel is 146.98-172.11 kJ/mol when Portevin-Le Chatelie(PLC)phenomenon occurs.The elongation reduction of T91 steel at 350℃is not specific to LBE environment,whereas the presence of LBE promotes crack initiation and propagation and affects the elongation of the material in the necking stage.With Si addition,the elongation,especially the uniform elongation at 350℃in LBE environment,improves,and the tendency toward crack propagation in T91 steel after slow tensile necking is reduced.The PLC phenomenon can be seen in both T91 and T91Si steels at high temperatures owing to the dynamic strain aging(DSA).The temperature ranges are different when DSA occurs,with 300-350℃and 250-350℃for T91 and T91Si steels,respectively.
基金supported by the National Key R&D Program of China(2020YFB1901900)。
文摘Investigations on entropy generation and thermal irreversibility analysis are conducted for liquid lead-bismuth eutectic(LBE)in an annular pipe.To find better performance in convective heat transfer,the computational fluid dynamics(CFD)code based on the finite volume method(FVM)is adopted to solve this problem.The elevated temperature LBE flows in the annular pipe,and four types of heat flux,including constant,linear increase and decrease,and parabolic distributions are imposed at the inside wall of the annular pipe.The investigations are conducted for the specific average heat input of 200 kW/m^(2),and the different Peclet number Pe is set from 1200 to 3200.The SST k-ωturbulent model and Cheng-Tak Prt model are adopted.The mesh independence validation and models verification are also conducted and the maximum Nu error is 5.43%compared with previous experimental correlations.The results from the local and system scales,respectively,including volumetric dimensionless entropy generation,Ns,Be,and Ep,are discussed.The results indicate that the viscous friction and heat transfer caused by entropy generation can be found in the viscous sub-layer and buffer layer respectively.Heat transfer is the primary factor that leads to irreversible losses.Besides,the results show that the best thermodynamic performance occurs under parabolic distributed heat flux in the research scope.
基金supported by the National Natural Science Foundation of China with Grant Nos.51375216 and 51505197the Open-Fund Research of State Key Lab of Advanced Welding and Joining with Grant No.AWJ-16-M07the Fusion Digital Simulation(FDS)Team for support the CLAM steel
文摘The cavitation erosion of weld joint and base metal of China low activation martensitic(CLAM)steel in liquid lead-bismuth eutectic alloy(LBE)at 550°C was investigated to simulate the cavitation erosion of the first wall and the nuclear main pump impeller in the accelerator driven sub-critical system(ADS).A suit of ultrasonic cavitation facility was self-designed to study the cavitation erosion.By studying the surface micro topography,roughness and mean pit depth of the tested specimens,it was found that some crater clusters and large scale cracks appeared on the tested specimen surface after the formation of numerous single craters,and the base metal exhibited much better cavitation erosion resistance than the weld bead due to the difference in their mechanical properties and microstructures.In addition,by comparing the results of static corrosion and cavitation erosion,it could be concluded that the cavitation erosion and the dissolution and oxidation corrosion in liquid LBE would accelerate mutually.
基金financially supported by Shanxi Province Natural Science Foundation of China(20210302123167)NSFC-Shanxi joint fund for coal-based low carbon(U1610223)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-TD006).
文摘Carbazole is an irreplaceable basic organic chemical raw material and intermediate in industry.The separation of carbazole from anthracene oil by environmental benign solvents is important but still a challenge in chemical engineering.Deep eutectic solvents (DESs) as a sustainable green separation solvent have been proposed for the separation of carbazole from model anthracene oil.In this research,three quaternary ammonium-based DESs were prepared using ethylene glycol (EG) as hydrogen bond donor and tetrabutylammonium chloride (TBAC),tetrabutylammonium bromide or choline chloride as hydrogen bond acceptors.To explore their extraction performance of carbazole,the conductor-like screening model for real solvents (COSMO-RS) model was used to predict the activity coefficient at infinite dilution (γ^(∞)) of carbazole in DESs,and the result indicated TBAC:EG (1:2) had the stronger extraction ability for carbazole due to the higher capacity at infinite dilution (C^(∞)) value.Then,the separation performance of these three DESs was evaluated by experiments,and the experimental results were in good agreement with the COSMO-RS prediction results.The TBAC:EG (1:2) was determined as the most promising solvent.Additionally,the extraction conditions of TBAC:EG (1:2) were optimized,and the extraction efficiency,distribution coefficient and selectivity of carbazole could reach up to 85.74%,30.18 and 66.10%,respectively.Moreover,the TBAC:EG (1:2) could be recycled by using environmentally friendly water as antisolvent.In addition,the separation performance of TBAC:EG (1:2) was also evaluated by real crude anthracene,the carbazole was obtained with purity and yield of 85.32%,60.27%,respectively.Lastly,the extraction mechanism was elucidated byσ-profiles and interaction energy analysis.Theoretical calculation results showed that the main driving force for the extraction process was the hydrogen bonding ((N–H...Cl) and van der Waals interactions (C–H...O and C–H...π),which corresponding to the blue and green isosurfaces in IGMH analysis.This work presented a novel method for separating carbazole from crude anthracene oil,and will provide an important reference for the separation of other high value-added products from coal tar.
基金This work was supported by the National Natural Science Foundation of China[21978070]Natural Science Foundation of Henan[212300410032,232103810065]+2 种基金Key Research and Development Projects of Henan Province[221111320500]Program for Science&Technology Innovation Talents in Universities of Henan Province[20HASTIT034]Henan Province“Double First-Class”Project-Food Science and Technology.
文摘Corn as one of the world's major food crops,its by-product corn cob is also rich in resources.However,the unreasonable utilization of corn cob often causes the environmental pollution,waste of resources and other problems.As one of the most abundant polymers in nature,xylan is widely used in food,medicine,materials and other fields.Corn cob is rich in xylan,which is an ideal raw material for extracting xylan.However,the intractable lignin is covalently linked to xylan,which increases the difficulty of xylan extraction.It has been reported that the deep eutectic solvent(DES)could preferentially dissolve lignin in biomass,thereby dissolving the xylan.Then,the xylan in the extract was separated by ethanol precipitation method.The xylan precipitate was obtained after centrifugation,while the supernatant was retained.The components of the supernatant after ethanol precipitation were separated by the rotary evaporator.The ethanol,water and DES were collected for the subsequent extraction of corn cob xylan.In this study,a novel way was provided for the green production of corn cob xylan.The DES was used to extract xylan from corn cob which was used as the raw material.The effects of solid-liquid ratio,reaction time,reaction temperature and water content of DES on the extraction rate of corn cob xylan were investigated by the single factor test.Furthermore,the orthogonal test was designed to optimize the xylan extraction process.The structure of corn cob xylan was analyzed and verified.The results showed that the optimum extraction conditions of corn cob xylan were as follows:the ratio of corn cob to DES was 1:15(g:mL),the extraction time was 3 h,the extraction temperature was 60℃,and the water content of DES was 70%.Under these conditions,the extraction rate of xylan was 16.46%.The extracted corn cob xylan was distinctive triple helix of polysaccharide,which was similar to the structure of commercially available xylan.Xylan was effectively and workably extracted from corn cob by the DES method.This study provided a new approach for high value conversion of corn cob and the clean production of xylan.
基金supported by the National Natural Science Foundation of China(22221005 and 22008033).
文摘The efficient separation and collection of ammonia(NH_(3))during NH_(3) synthesis process is essential to improve the economic efficiency and protect the environment.In this work,ethanolammonium hydrochloride(EtOHACl)and phenol(PhOH)were used to prepare a novel class of deep eutectic solvents(DESs)with multiple active sites and low viscosities.The NH_(3) separation performance of EtOHACl+PhOH DESs was analyzed completely.It is figured out that the NH_(3) absorption rates in EtOHACl+PhOH DESs are very fast.The NH_(3) absorption capacities are very high and reach up to 5.52 and 10.74 mol·kg1 at 11.2 and 100.4 kPa under 298.2 K,respectively.In addition,the EtOHACl+PhOH DESs present highly selective absorption of NH_(3) over N_(2) and H_(2) and good regenerative properties after seven cycles of absorption/desorption.The intrinsic separation mechanism of NH_(3) by EtOHACl+PhOH DESs was further revealed by spectroscopic analysis and quantum chemistry calculations.
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LY23E060004)Royal Society Newton Advanced Fellowship(No.52061130218)
文摘Safe operation of electrochemical capacitors(supercapacitors)is hindered by the flammability of commercial organic electrolytes.Non-flammable Water-in-Salt(WIS)electrolytes are promising alternatives;however,they are plagued by the limited operation voltage window(typically≤2.3 V)and inherent corrosion of current collectors.Herein,a novel deep eutectic solvent(DES)-based electrolyte which uses formamide(FMD)as hydrogen-bond donor and sodium nitrate(NaNO_(3))as hydrogen-bond acceptor is demonstrated.The electrolyte exhibits the wide electrochemical stability window(3.14 V),high electrical conductivity(14.01 mScm^(-1)),good flame-retardance,anticorrosive property,and ultralow cost(7%of the commercial electrolyte and 2%of WIS).Raman spectroscopy and Density Functional Theory calculations reveal that the hydrogen bonds between the FMD molecules and NO_(3)^(-)ions are primarily responsible for the superior stability and conductivity.The developed NaNO_(3)/FMD-based coin cell supercapacitor is among the best-performing state-of-art DES and WIS devices,evidenced by the high voltage window(2.6 V),outstanding energy and power densities(22.77 Wh kg^(-1)at 630 W kg^(-1)and 17.37 kW kg^(-1)at 12.55 Wh kg^(-1)),ultralong cyclic stability(86%after 30000 cycles),and negligible current collector corrosion.The NaNO_(3)/FMD industry adoption potential is demonstrated by fabricating 100 F pouch cell supercapacitors using commercial aluminum current collectors.
基金the College Student Innovation and Entrepreneurship Training Program Project of Liaoning Province(202310148016)Doctoral Fund of Liaoning Province(201501105).
文摘A series of Lewis-acid deep eutectic solvents (DESs) were synthesized by stirring phosphoric acid and zincchloride as raw materials at 80℃ to form H_(3)PO_(4)/nZnCl_(2) (n = 0.1, 0.25, 0.5, 0.75, 1). The DESs were characterized byFourier transform infrared spectrophotometry (FT-IR), thermogravimetry/differential thermogravimetry (TG/DTG), andelectron spray ionization mass spectrometry (ESI-MS). The DESs were used as both extractants and catalysts to removedibenzothiophene from fuels via oxidative desulfurization (ODS). Experiments were performed to investigated the influenceof factors such as composition of DES, temperature, oxidant dosage (molar ratio of O:S), DES dosage (volume ratio ofDES:oil), and number of cycles on desulfurization rate. The results indicated that the removal rate of dibenzothiophene (DBT)was affected by the Lewis acidic DESs, with that of H_(3)PO_(4)/0.25∙ZnCl_(2) reaching 96.4% under optimal conditions (Voil=5 mL,VDES=1 mL, an oxidant dosage of 6, T=50 ℃). After six cycles, the desulfurization rate of H_(3)PO_(4)/0.25∙ZnCl_(2) remained above94.1%. The apparent activation energy of dibenzothiophene (DBT) removal reaction was determined by a pseudo-first orderkinetic equation according to the Arrhenius equation to be 32.34 kJ/mol, as estimated. A reaction mechanism is proposedbased on the experimental data and characterization results.
基金supported by Ignite Research Collaborations(IRC),Startup funds,and the UK Artificial Intelligence(AI)in Medicine Research Alliance Pilot(NCATS UL1TR001998 and NCI P30 CA177558)。
文摘Non-ionic deep eutectic solvents(DESs)are non-ionic designer solvents with various applications in catalysis,extraction,carbon capture,and pharmaceuticals.However,discovering new DES candidates is challenging due to a lack of efficient tools that accurately predict DES formation.The search for DES relies heavily on intuition or trial-and-error processes,leading to low success rates or missed opportunities.Recognizing that hydrogen bonds(HBs)play a central role in DES formation,we aim to identify HB features that distinguish DES from non-DES systems and use them to develop machine learning(ML)models to discover new DES systems.We first analyze the HB properties of 38 known DES and 111 known non-DES systems using their molecular dynamics(MD)simulation trajectories.The analysis reveals that DES systems have two unique features compared to non-DES systems:The DESs have①more imbalance between the numbers of the two intra-component HBs and②more and stronger inter-component HBs.Based on these results,we develop 30 ML models using ten algorithms and three types of HB-based descriptors.The model performance is first benchmarked using the average and minimal receiver operating characteristic(ROC)-area under the curve(AUC)values.We also analyze the importance of individual features in the models,and the results are consistent with the simulation-based statistical analysis.Finally,we validate the models using the experimental data of 34 systems.The extra trees forest model outperforms the other models in the validation,with an ROC-AUC of 0.88.Our work illustrates the importance of HBs in DES formation and shows the potential of ML in discovering new DESs.
基金Supported by Project of The Education Department of Fujian Province(JAT201227).
文摘As a new type of green solvents,deep eutectic solvents(DESs)have the advantages of strong extraction ability,designability,simple preparation,low price,recoverability and biodegradation,and show great application potential in the field of plant flavonoid extraction.In this paper,the definition,classification and preparation methods of DESs were introduced.The effects of DES composition,molar ratio of DES components,water content of DES systems,liquid-material ratio,extraction temperature,extraction time and extraction auxiliary techniques on the extraction yield of plant flavonoids were expounded.The recycling methods of DESs were summarized.Existing problems of DESs in the field of plant flavonoids extraction were pointed out,and further research direction and trend were analyzed and prospected.
文摘In this study we used the deep eutectic solvents (ionic liquids) to investigate the reaction between copper (II) with ethylene diamine (en). Two of the existing methods for analyzing spectrophotometric measurements have been applied for establishing, the stoichiometry and whenever possible, the stability constants of the chelates formed. The method of continuous variations was necessary to determine first whether, the metal ion and the ligand ethylene diamine form one or more than one chelate, when more than one chelate formed, the results obtained depend on the wavelength and for meaningful conclusions the wavelengths were carefully selected. The empirical formulae of the chelates were further substantiated by the molar ratio method. The effect of time and temperature on the formation and stability of these chelates in solution is also studied. The stability constants, K1 and K2 for the copper (II) chelates were calculated, though reliable, and are comparable to literature values.