Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3(BNT-BT) were prepared by the conventional piezoelectric ceramic preparation technique (free air atmosphere sintering). The influence of BaTiO3 additive amoun...Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3(BNT-BT) were prepared by the conventional piezoelectric ceramic preparation technique (free air atmosphere sintering). The influence of BaTiO3 additive amount and La2O3 additive amount on the properties of BNT-BT lead-free piezoceramics were investigated. The results show that the dielectric constant(ε) and piezoelectric strain constant(d33) of materials start increasing and then decreasing while BaTiO3 additive amount increasing, the e and d33 of materials have maximum value (ε= 1650, d33 = 120 PC·N -1 ) while x (BaTiO3) =0.06 mol. Theεand d33 of materials start increasing and then decreasing while La2O3 additive amount increasing, the e and d33 of materials have maximum value (ε= 1684, d33 = 153 PC·N-1) while w(La2O3) =0.3% . The influence of La2O3 additive amount on the microstructure of BNT-BT piezoelectric ceramics was analysed by SEM( scanning electron microscope). The influence mechanism of La2O3 additive amount on the properties of BNT-BT piezoelectric ceramics was discussed. The BNT-BT ceramics with optimum comprehensive properties were obtained.展开更多
Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hy...Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hysteresis under low electric fields has remained a significant challenge.To address this long-standing issue,we have employed a collaborative approach that combines defect engineering,phase engineering,and relaxation engineering.The LKNNS-6BZH ceramic,when sintered at T_(sint)=1170℃,demonstrates an impressive electrostrain with a d_(33) value of 0.276%and 1379 pm·V^(-1)under 20 kV·cm^(-1),which is comparable to or even surpasses that of other lead-free and Pb(Zr,Ti)O_(3)ceramics.Importantly,the electrostrain performance of this ceramic remains stable up to a temperature of 125℃,with the lowest hysteresis observed at 9.73%under 40 kV·cm^(-1).These excellent overall performances are attributed to the presence of defect dipoles involving V′_(A)-V∙∙_(O) and B′_(Nb)-V∙∙O,the coexistence of R-O-T multiphase,and the tuning of the trade-off between long-range ordering and local heterogeneity.This work provides a lead-free alternative for piezoelectric actuators and a paradigm for designing piezoelectric materials with outstanding comprehensive performance under low electric fields.展开更多
A number of CaHfO_(3)modified BiFeO_(3)-0.33BaTiO_(3)(BF-0.33BT-xCH)lead-free piezoceramics were fabri-cated through the solid-state sintering method and comprehensively investigated in this work.Under the optimal sin...A number of CaHfO_(3)modified BiFeO_(3)-0.33BaTiO_(3)(BF-0.33BT-xCH)lead-free piezoceramics were fabri-cated through the solid-state sintering method and comprehensively investigated in this work.Under the optimal sintering temperature,all compositions display a typical perovskite structure in a pseudo-cubic phase with slightly larger lattice parameters as the CH content increases.The electrical resistivity is highly enhanced due to the addition of CH.Microstructures,including the grain morphology,core-shell structure,and chemistry inhomogeneities,are demonstrated upon different BF-0.33BT-xCH composi-tions.In particular,the core-shell structures with non-uniform element distributions in the compositions can be eliminated by adding sufficient CH content(x>0.05).The highest saturation polarization(40.1 mC/cm^(2)),remnant polarization(26.8 mC/cm^(2)),and converse piezoelectric coefficient(290 pm/V)are achieved in the BF-0.33BT-0.01CH piezoceramic,which are significantly enhanced in comparison with the undoped BF-0.33BT piezoceramic.With further increasing the CH content,the piezoelectric properties of BF-0.33BT-xCH ceramics decline rapidly,and they start to exhibit characteristics of relaxor ferroelectrics.展开更多
It is well-known that the performance of BiFeO3eBaTiO3(BF-BT)ceramics is sensitive to composition,calcining and sintering temperature(Tcal and Tsint)due to the formation of Bi25FeO39 and/or Bi2Fe4O9 impurities and/or ...It is well-known that the performance of BiFeO3eBaTiO3(BF-BT)ceramics is sensitive to composition,calcining and sintering temperature(Tcal and Tsint)due to the formation of Bi25FeO39 and/or Bi2Fe4O9 impurities and/or the volatilization of Bi_(2)O_(3).We report remarkably stable electrical properties over the range of0.03≤x≤0.05 and 930℃≤Tsint≤970C in 0.7Bi(1þx)FeO_(3)-0.3BaTiO_(3)ceramics prepared by one-step process.This method avoids the thermodynamically unstable region of BiFeO_(3)and prevents the formation of Bi25FeO39 and/or Bi_(2)Fe_(4)O_(9)impurities even when the addition of a-Bi_(2)O_(3)raw material is intentionally deficient or rich to make off-stoichiometric BF-BT,thus greatly improving the robustness of compositional and processing.Rhombohedral-pseudocubic phase coexists in all ceramics,and their CR/CPC fraction are 48.0/52.0e50.6/49.4 and 55.9/44.1e56.6/43.4 when x increases from0.05≤x≤0 to 0.01≤x≤0.05.The stable electrical properties of d33¼180e205 pC/N,Pr¼17.9e23.8 mC/cm^(2),and TC¼485e518℃are achieved.The maximum d_(33T)/d_(33RT)of BF-BT is twice that of soft PZT,superior to most the-state-of-art lead-free ceramics.Our results provide a synthesis strategy for designing high performance piezoelectric materials with good stability and easy industrialization.展开更多
With the capability of interconversion between electrical and mechanical energy,piezoelectric materials have been revolutionized by the implementation of perovskite-piezoelectric-ceramic-based studies over 70 years.In...With the capability of interconversion between electrical and mechanical energy,piezoelectric materials have been revolutionized by the implementation of perovskite-piezoelectric-ceramic-based studies over 70 years.In particular,the market of piezoelectric ceramics has been dominated by lead zirconate titanate for decades.Nowadays,the research on piezoelectric ceramics is largely driven by cutting-edge technological demand as well as the consideration of a sustainable society.Hence,environmental-friendly lead-free piezoelectric materials have emerged to replace lead-based Pb(Zr,Ti)O_(3)(PZT)compositions.Owing to the inherent high mechanical quality factor(Q_(m))and low energy loss,(Li,Na)NbO_(3)(LNN)materials have recently drawn increasing attention and brought advantages to high-power piezoelectric applications.Although the crystallographic structures of LNN materials were intensively investigated for decades,the technical strategies for electrical performance are still limited.As a result,the property enhancement appears to have approached a plateau.This review traces the progress in the development of LNN materials,starting from the polymorphism in terms of the crystal structures,phase transitions,and local structural distortions.Then,the key milestone works on the functional tunability of LNN are reviewed with emphasis on involved engineering approaches.The exceptional performance at a large vibration velocity makes LNN ceramics promising for high-power applications,such as ultrasonic welding(UW)and ultrasonic osteotomes(UOs).The remaining challenges and some strategic insights for synergistically engineering the functional performance of LNN piezoceramics are also suggested.展开更多
In this review,the evolution of high strain Na_(0.5)Bi_(0.5)TiO_(3)-based lead-free piezoceramics and their multilayer actuators has been explored.First,in terms of Na_(0.5)Bi_(0.5)TiO_(3)-based ceramic materials,the ...In this review,the evolution of high strain Na_(0.5)Bi_(0.5)TiO_(3)-based lead-free piezoceramics and their multilayer actuators has been explored.First,in terms of Na_(0.5)Bi_(0.5)TiO_(3)-based ceramic materials,the origin of high strain,the typical chemical modification methods of obtaining large strain and extrinsic factors affecting the large strain are discussed.Then it briefly summarizes the problems existing in Na_(0.5)Bi_(0.5)TiO_(3)-based ceramics for multilayer actuator applications.Strategies to optimize strain performance by means of microstructure control and phase structure design are also discussed.Thereafter,in terms of multilayer actuator,we describe its characteristics,applications and preparation process systematically,as well as the recent development of Na_(0.5)Bi_(0.5)TiO_(3)-based multilayer actuator.At last,perspectives on directions of following work and promising fields for the applications of the materials and their devices are presented.展开更多
Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand ...Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts.展开更多
Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ ...Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.展开更多
Lead-free piezoceramics based on the(Ba,Ca)(Zr,Ti)O3(BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Her...Lead-free piezoceramics based on the(Ba,Ca)(Zr,Ti)O3(BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Here we demonstrate an approach for the reduction of the sintering temperature and simultaneous increase of the electromechanical strain response of(Ba,Ca)(Zr,Ti)O3 piezoceramics by aliovalent doping with Ce. The samples were prepared by solid state synthesis and their crystallographic structure, dielectric, ferroelectric, and electromechanical properties were investigated. The highest d33* value of 1189 pm/V was obtained for the sample with 0.05 mol% Ce, substituted on the A-site of the perovskite lattice. The results indicate a large potential of these materials for off-resonance piezoelectric actuators.展开更多
The recent review for the Restriction of Hazardous Substances Directive(RoHS)by the expert committee,appointed by the European Union,stated that the replacement of PZT“…may be scientifically and technologically prac...The recent review for the Restriction of Hazardous Substances Directive(RoHS)by the expert committee,appointed by the European Union,stated that the replacement of PZT“…may be scientifically and technologically practical to a certain degree…”,although replacement“…is scientifically and technically still impractical in the majority of applications.”Thus,two decades of sustained research and development may be approaching fruition,at first limited to a minority of applications.Therefore,it is of paramount importance to assess the viability of lead-free piezoceramics over a broad range of application-relevant properties.These are identified and discussed in turn:1.Cost,2.Reproducibility,3.Mechanical and Thermal Properties,4.Electrical Conductivity,and 5.Lifetime.It is suggested that the worldwide efforts into the development of lead-free piezoceramics now require a broader perspective to bring the work to the next stage of development by supporting implementation into real devices.Guidelines about pertinent research requirements into a wide range of secondary properties,measurement techniques,and salient literature are provided.展开更多
Most widely used piezoelectric ceramics are based on Pb(Zr,Ti)O3(PZT)composition which has adverse environmental and health effects due to its high lead content.Environmental and safety concerns with respect to the ut...Most widely used piezoelectric ceramics are based on Pb(Zr,Ti)O3(PZT)composition which has adverse environmental and health effects due to its high lead content.Environmental and safety concerns with respect to the utilization,recycling,and disposal of lead-based piezoelectric ceramics have induced a new surge in developing lead-free piezoelectric ceramics.Among all the lead-free ceramics,(K,Na)NbO3(KNN)has drawn increasing attention because of its well-balanced piezoelectric properties and better environmental compatibility.On basis of the author’s work,this review summarizes the progress that has been made in recent years on development of KNN-based piezoelectric ceramics,including crystallographic structure and phase transition analysis,pressurized solid-state sintering as well as liquid-phase-assisted sintering process,and poling treatment for property enhancement.All in all,KNN is a promising lead-free system,but more research is still required both from academic and industrial interests.展开更多
Lead-free (K0.5Na0.5)(Nb1-xGex)O3 (KNN-xGe, where x = 0-0.01) piezo- electric ceramics were prepared by conventional ceramic processing. The effects of Ge4+cation doping on the phase compositions, microstructur...Lead-free (K0.5Na0.5)(Nb1-xGex)O3 (KNN-xGe, where x = 0-0.01) piezo- electric ceramics were prepared by conventional ceramic processing. The effects of Ge4+cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nbs+ ions as acceptors, and the Curie temperature (Tc) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020℃. Ge4+ doping less than 0.4 mol.% can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.展开更多
Doping effects of CuO on the sintering behavior and electrical properties of 0.94(Bi_(0.5)Na_(0.5))TiO_(3)-0.06(BaTiO_(3))-xCuO(BNT-BT6-xCu)lead-free piezoceramic obtained by the conventional solid-state reaction meth...Doping effects of CuO on the sintering behavior and electrical properties of 0.94(Bi_(0.5)Na_(0.5))TiO_(3)-0.06(BaTiO_(3))-xCuO(BNT-BT6-xCu)lead-free piezoceramic obtained by the conventional solid-state reaction method were investigated.Regarding the undoped system,it is already known that it presents the best densification values when it is sintered at 1150℃,however,the doped system was sintered at 1150℃,1100℃,1050℃,1025℃,and 975℃ to determine the effect of Cu on the densification process.Therefore,it was obtained that the CuO-doped samples sintered at 1050℃ presented the highest density values and therefore were the ones chosen to perform the characterization tests together with the undoped system.The samples were characterized using X-ray diffraction(XRD),Raman microspectroscopy,and scanning electron microscopy(SEM)analysis,whereas the ferroelectric and dielectric properties were evaluated by means of ferroelectric hysteresis loops and impedance spectroscopy studies.As a result,the addition of CuO allowed an improvement in sinterability and densification,with the subsequent grain growth,and the improvement of the piezoelectric coefficient(d_(33)).展开更多
Porous piezoceramics are of interest for applications such as low frequency hydrophones. Porous(K,Na,Li)NbO_3-BaZrO_3-(Bi,Na)TiO_3 lead-free piezoceramics having vertical morphotropic phase boundary composition were f...Porous piezoceramics are of interest for applications such as low frequency hydrophones. Porous(K,Na,Li)NbO_3-BaZrO_3-(Bi,Na)TiO_3 lead-free piezoceramics having vertical morphotropic phase boundary composition were fabricated by adding 30 μm-diameter acrylic resins. The ceramic powders were synthesized by a conventional solid-state reaction method and then mixed with the resins. Volume ratios of ceramics to resin were 90:10, 80:20, 70:30, and 60:40. After burning out the resins and binder, the specimens were sintered at 1170–1190 ℃ for 5 h. The porous specimen with 30 vol% acrylic resin had longitudinal acoustic velocity of 4518 m/s, acoustic impedance of 16.44 Mkg/(m^2·s), and hydrostatic figure of merit of 405×10^(-15)m^2/N. The hydrostatic figure of merit was about 4 times of that of monolithic ceramics. Compared with monolithic ceramics, the porous specimen had a better transducer sensitivity for underwater applications.展开更多
Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achie...Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy,named high-entropy strategy,realizing nearly ten times growth of energy storage density compared with low-entropy material.Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time.The achievement of excellent energy storage properties should be attributed to the enhanced random field,decreased nanodomain size,strong multiple local distortions,and improved breakdown field.Furthermore,the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized.The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics,promoting the development of advanced capacitors.展开更多
All-inorganic lead-free palladium(Pd)halogen perovskites with prominent optoelectronic properties provide admirable potential for selective photo-and electroreduction of CO_(2).But it remains unachieved for effectivel...All-inorganic lead-free palladium(Pd)halogen perovskites with prominent optoelectronic properties provide admirable potential for selective photo-and electroreduction of CO_(2).But it remains unachieved for effectively converting the CO_(2)to CO with high selectivity on Pd-based perovskites driven by solar light or electricity.Herein,high-quality Cs_(2)PdBr_(6)microcrystals and nanocrystals were synthesized through a facile antisolvent method.Among all the reported pure-phase perovskites,the Cs_(2)PdBr_(6)nanocrystals synthesized at 50℃performed the highest effectiveness on CO_(2)to CO conversion generating 73.8μmol g^(-1)of CO yield with 100%selectivity under visible light illumination(λ>420 nm)for 3 h.Meanwhile,for the first time,we report a new application of lead-free perovskites,in which they are applied to electrocatalysis of CO_(2)reduction reaction.Noticeably,they showed significant electrocatalytic activity(Faradaic yield:78%for CO)and operation stability(10 h).And the surface reaction intermediates were dynamically monitored and precisely unraveled according to the in situ diffuse reflectance infrared Fourier transform spectra investigation.In combination with the density functional theory calculation,the reaction mechanism and pathways were revealed.This work not only provides significant strategies to enhance the photocatalytic performance of perovskites,but also shows excellent potential for their application in electrocatalysis.展开更多
Development of tin(Sn)-based perovskite solar cells(PSCs)largely lags behind that of lead counterparts due to fast crystallization process of Sn perovskite and numerous defects in both bulk and surface of Sn perovskit...Development of tin(Sn)-based perovskite solar cells(PSCs)largely lags behind that of lead counterparts due to fast crystallization process of Sn perovskite and numerous defects in both bulk and surface of Sn perovskite films.Herein,this work reports a facile strategy of introducing 4-fluorobenzylammonium iodide(FBZAI)as additives into Sn perovskite precursor to synergistically modulate the roles of benzylamine and fluorine in Sn-based PSCs.Incorporation of FBZAI can increase crystallinity,passivate defects,and inhibit the oxidation of Sn^(2+),leading to suppression of nonradiative recombination and enhancement of charge transport and collection in devices.As a result,the best-performing Sn-based PSC with the FBZAI additive achieves the maximum PCE of 13.85%with the enhanced fill factor of 77.8%and open-circuit voltage of 0.778 V.Our unencapsulated device exhibits good stability by maintaining 95%of its initial PCE after 160 days of storage.展开更多
Development of lead-free halide perovskites that are innocuous and stable has become an attractive trend in resistive random access memory(RRAM)fields.However,their inferior memory properties compared with the lead-ba...Development of lead-free halide perovskites that are innocuous and stable has become an attractive trend in resistive random access memory(RRAM)fields.However,their inferior memory properties compared with the lead-based analogs hinder their commercialization.Herein,the lead-free Cs_(3)Bi_(2)Br_(9)perovskite quantum dot(PQD)-based RRAMs are reported with outstanding memory performance,where Cs_(3)Bi_(2)Br_(9)quantum dots(QDs)are synthesized via a modified ligand-assisted recrystallization process.This is the first report of applying Cs_(3)Bi_(2)Br_(9)QDs as the switching layer for RRAM device.The Cs_(3)Bi_(2)Br_(9)QD device demonstrates nonvolatile resistive switching(RS)effect with large ON/OFF ratio of 105,low set voltage of-0.45 V,as well as good reliability,reproducibility,and flexibility.Concurrently,the device exhibits the notable tolerance toward moisture,heat and light illumination,and long-term stability of 200 days.More impressively,the device shows the reliable light-modulated RS behavior,and therefrom the logic gate operations including"AND"and"OR"are implemented,foreboding its prospect in logic circuits integrated with storage and computation.Such multifunctionality of device could be derived from the unique 2D layered crystal structure,small particle size,quantum confinement effect,and photoresponse of Cs_(3)Bi_(2)Br_(9)QDs.This work provides the strategy toward the high-performance RRAMs based on stable and eco-friendly perovskites for future applications.展开更多
Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and th...Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield(PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 h.Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature(CCT) of 4290 K, a Commission Internationale de l’Eclairage(CIE) coordinate of(0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100°C. Finally, the yellow LEDs facilitate the application in wireless visible light communication(VLC), which show a-3 dB bandwidth of 21.5 MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing(OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3in the field of yellow illumination and wireless VLC.展开更多
To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparat...To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparation condition and piezoelectric properties of the samples were investigated.The XRD results show that the fabric transites from rhombohedral to tetragonal gradually with the substitution of the Ba^(2+).The morphotropic phase boundaries(MPB)exists in the composition range of 0.06.展开更多
文摘Lead-free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BaTiO3(BNT-BT) were prepared by the conventional piezoelectric ceramic preparation technique (free air atmosphere sintering). The influence of BaTiO3 additive amount and La2O3 additive amount on the properties of BNT-BT lead-free piezoceramics were investigated. The results show that the dielectric constant(ε) and piezoelectric strain constant(d33) of materials start increasing and then decreasing while BaTiO3 additive amount increasing, the e and d33 of materials have maximum value (ε= 1650, d33 = 120 PC·N -1 ) while x (BaTiO3) =0.06 mol. Theεand d33 of materials start increasing and then decreasing while La2O3 additive amount increasing, the e and d33 of materials have maximum value (ε= 1684, d33 = 153 PC·N-1) while w(La2O3) =0.3% . The influence of La2O3 additive amount on the microstructure of BNT-BT piezoelectric ceramics was analysed by SEM( scanning electron microscope). The influence mechanism of La2O3 additive amount on the properties of BNT-BT piezoelectric ceramics was discussed. The BNT-BT ceramics with optimum comprehensive properties were obtained.
基金This study was financially supported by the National Natural Science Foundation of China(Nos.52032007 and 52072028)the National Key R&D Program(No.2022YFB3807400)+1 种基金the Basic Science Center Project of National Natural Science Foundation of China(No.52388201)Tsinghua University-Toyota Research Center.
文摘Over the past two decades,(K_(0.5)Na_(0.5))NbO_(3)(KNN)-based lead-free piezoelectric ceramics have made significant progress.However,attaining a high electrostrain with remarkable temperature stability and minimal hysteresis under low electric fields has remained a significant challenge.To address this long-standing issue,we have employed a collaborative approach that combines defect engineering,phase engineering,and relaxation engineering.The LKNNS-6BZH ceramic,when sintered at T_(sint)=1170℃,demonstrates an impressive electrostrain with a d_(33) value of 0.276%and 1379 pm·V^(-1)under 20 kV·cm^(-1),which is comparable to or even surpasses that of other lead-free and Pb(Zr,Ti)O_(3)ceramics.Importantly,the electrostrain performance of this ceramic remains stable up to a temperature of 125℃,with the lowest hysteresis observed at 9.73%under 40 kV·cm^(-1).These excellent overall performances are attributed to the presence of defect dipoles involving V′_(A)-V∙∙_(O) and B′_(Nb)-V∙∙O,the coexistence of R-O-T multiphase,and the tuning of the trade-off between long-range ordering and local heterogeneity.This work provides a lead-free alternative for piezoelectric actuators and a paradigm for designing piezoelectric materials with outstanding comprehensive performance under low electric fields.
基金supported by the Science,Technology and Innovation Commission of Shenzhen Municipality,grants No:RCBS20210706092341001 and No:JCYJ20220531095802005.
文摘A number of CaHfO_(3)modified BiFeO_(3)-0.33BaTiO_(3)(BF-0.33BT-xCH)lead-free piezoceramics were fabri-cated through the solid-state sintering method and comprehensively investigated in this work.Under the optimal sintering temperature,all compositions display a typical perovskite structure in a pseudo-cubic phase with slightly larger lattice parameters as the CH content increases.The electrical resistivity is highly enhanced due to the addition of CH.Microstructures,including the grain morphology,core-shell structure,and chemistry inhomogeneities,are demonstrated upon different BF-0.33BT-xCH composi-tions.In particular,the core-shell structures with non-uniform element distributions in the compositions can be eliminated by adding sufficient CH content(x>0.05).The highest saturation polarization(40.1 mC/cm^(2)),remnant polarization(26.8 mC/cm^(2)),and converse piezoelectric coefficient(290 pm/V)are achieved in the BF-0.33BT-0.01CH piezoceramic,which are significantly enhanced in comparison with the undoped BF-0.33BT piezoceramic.With further increasing the CH content,the piezoelectric properties of BF-0.33BT-xCH ceramics decline rapidly,and they start to exhibit characteristics of relaxor ferroelectrics.
基金supported by the National Natural Science Foundation of China(52072028 and 52032007).
文摘It is well-known that the performance of BiFeO3eBaTiO3(BF-BT)ceramics is sensitive to composition,calcining and sintering temperature(Tcal and Tsint)due to the formation of Bi25FeO39 and/or Bi2Fe4O9 impurities and/or the volatilization of Bi_(2)O_(3).We report remarkably stable electrical properties over the range of0.03≤x≤0.05 and 930℃≤Tsint≤970C in 0.7Bi(1þx)FeO_(3)-0.3BaTiO_(3)ceramics prepared by one-step process.This method avoids the thermodynamically unstable region of BiFeO_(3)and prevents the formation of Bi25FeO39 and/or Bi_(2)Fe_(4)O_(9)impurities even when the addition of a-Bi_(2)O_(3)raw material is intentionally deficient or rich to make off-stoichiometric BF-BT,thus greatly improving the robustness of compositional and processing.Rhombohedral-pseudocubic phase coexists in all ceramics,and their CR/CPC fraction are 48.0/52.0e50.6/49.4 and 55.9/44.1e56.6/43.4 when x increases from0.05≤x≤0 to 0.01≤x≤0.05.The stable electrical properties of d33¼180e205 pC/N,Pr¼17.9e23.8 mC/cm^(2),and TC¼485e518℃are achieved.The maximum d_(33T)/d_(33RT)of BF-BT is twice that of soft PZT,superior to most the-state-of-art lead-free ceramics.Our results provide a synthesis strategy for designing high performance piezoelectric materials with good stability and easy industrialization.
基金support from Beijing Municipal Science and Technology Commission (No.Z201100004520018)supported by the National Natural Science Foundation of China (Nos.52032005 and U2241243)Beijing Natural Science Foundation (Nos.JQ20009 and JQ22010).
文摘With the capability of interconversion between electrical and mechanical energy,piezoelectric materials have been revolutionized by the implementation of perovskite-piezoelectric-ceramic-based studies over 70 years.In particular,the market of piezoelectric ceramics has been dominated by lead zirconate titanate for decades.Nowadays,the research on piezoelectric ceramics is largely driven by cutting-edge technological demand as well as the consideration of a sustainable society.Hence,environmental-friendly lead-free piezoelectric materials have emerged to replace lead-based Pb(Zr,Ti)O_(3)(PZT)compositions.Owing to the inherent high mechanical quality factor(Q_(m))and low energy loss,(Li,Na)NbO_(3)(LNN)materials have recently drawn increasing attention and brought advantages to high-power piezoelectric applications.Although the crystallographic structures of LNN materials were intensively investigated for decades,the technical strategies for electrical performance are still limited.As a result,the property enhancement appears to have approached a plateau.This review traces the progress in the development of LNN materials,starting from the polymorphism in terms of the crystal structures,phase transitions,and local structural distortions.Then,the key milestone works on the functional tunability of LNN are reviewed with emphasis on involved engineering approaches.The exceptional performance at a large vibration velocity makes LNN ceramics promising for high-power applications,such as ultrasonic welding(UW)and ultrasonic osteotomes(UOs).The remaining challenges and some strategic insights for synergistically engineering the functional performance of LNN piezoceramics are also suggested.
基金the support by the National Natural Science Foundation of China(No.U1732117,51902111 and 51672092)the China Postdoctoral Science Foundation(No.2019M662602)+1 种基金the Open Fund of Guangxi Key Laboratory of Information Materials(No.191015-K)the Donguan Innovative Research Team Program.
文摘In this review,the evolution of high strain Na_(0.5)Bi_(0.5)TiO_(3)-based lead-free piezoceramics and their multilayer actuators has been explored.First,in terms of Na_(0.5)Bi_(0.5)TiO_(3)-based ceramic materials,the origin of high strain,the typical chemical modification methods of obtaining large strain and extrinsic factors affecting the large strain are discussed.Then it briefly summarizes the problems existing in Na_(0.5)Bi_(0.5)TiO_(3)-based ceramics for multilayer actuator applications.Strategies to optimize strain performance by means of microstructure control and phase structure design are also discussed.Thereafter,in terms of multilayer actuator,we describe its characteristics,applications and preparation process systematically,as well as the recent development of Na_(0.5)Bi_(0.5)TiO_(3)-based multilayer actuator.At last,perspectives on directions of following work and promising fields for the applications of the materials and their devices are presented.
基金the National Natural Science Foundation of China(Grant No.62375032)the Natural Science Foundation of Chongqing(Grant No.CSTB2023TIADKPX0017)+2 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)the China Postdoctoral Science Foundation(Grant No.BX20230355)the Department of Education of Guizhou Province(Guizhou Teaching and Technology[2023]015)。
文摘Metal halide perovskites(MHP)are potential candidates for the photocatalytic reduction of CO_(2)due to their long photogenerated carrier lifetime and charge diffusion length.However,the conventional long-chain ligand impedes the adsorption and activation of CO_(2)molecules in practical applications.Here,a ligand modulation technology is employed to enhance the photocatalytic CO_(2)reduction activity of lead-free Cs_(2)AgInCl_(6)microcrystals(MCs).The Cs_(2)AgInCl_(6)MCs passivated by Oleic acid(OLA)and Octanoic acid(OCA)are used for photocatalytic CO_(2)reduction.The results show that the surface defects and electronic properties of Cs_(2)AgInCl_(6)MCs can be adjusted through ligand modulation.Compared with the OLA-Cs_(2)AgInCl_(6),the OCA-Cs_(2)AgInCl_(6)catalyst demonstrated a significant improvement in the catalytic yield of CO and CH_(4).The CO and CH_(4)catalytic yields of OCA-Cs_(2)AgInCl_(6)reached 171.88 and34.15μmol g^(-1)h^(-1)which were 2.03 and 12.98 times higher than those of OLA-Cs_(2)AgInCl_(6),and the total electron consumption rate of OCA-Cs_(2)AgInCl_(6)was 615.2μmol g^(-1)h^(-1)which was 3.25 times higher than that of OLA-Cs_(2)AgInCl_(6).Furthermore,in situ diffuse reflectance infrared Fourier transform spectra revealed the enhancement of photocatalytic activity in Cs_(2)AgInCl_(6)MCs induced by ligand modulation.This study illustrates the potential of lead-free Cs_(2)AgInCl_(6)MCs for efficient photocatalytic CO_(2)reduction and provides a ligand modulation strategy for the active promotion of MHP photocatalysts.
文摘Although there are many lead-free soldering alloys on the market, none of them have ideal qualities. The researchers are combining binary alloys with a variety of additional materials to create the soldering alloys’ features. The eutectic Sn-9Zn alloy is among them. This paper investigated the mechanical and electrical properties of Sn-9Zn-x (Ag, Cu, Sb);{x = 0.2, 0.4, and 0.6} lead-free solder alloys. The mechanical properties such as elastic modulus, ultimate tensile strength (UTS), yield strength (YS), and ductility were examined at the strain rates in a range from 4.17 10−3 s−1 to 208.5 10−3 s−1 at room temperature. It is found that increasing the content of the alloying elements and strain rate increases the elastic modulus, ultimate tensile strength, and yield strength while the ductility decreases. The electrical conductivity of the alloys is found to be a little smaller than that of the Sn-9Zn eutectic alloy.
基金funded by Ministry of Science,Research and Technology of Iran as a Ph.D.project,with Grant No.481392053,at Materials&Energy Research Center(MERC)supported by Deutsche Forschungsgemeinschaft under the Sonderforschungsbereich 595(SFB 595)fellowship
文摘Lead-free piezoceramics based on the(Ba,Ca)(Zr,Ti)O3(BCZT) system exhibit excellent electromechanical properties for low-temperature actuation applications, but suffer from relatively high processing temperatures. Here we demonstrate an approach for the reduction of the sintering temperature and simultaneous increase of the electromechanical strain response of(Ba,Ca)(Zr,Ti)O3 piezoceramics by aliovalent doping with Ce. The samples were prepared by solid state synthesis and their crystallographic structure, dielectric, ferroelectric, and electromechanical properties were investigated. The highest d33* value of 1189 pm/V was obtained for the sample with 0.05 mol% Ce, substituted on the A-site of the perovskite lattice. The results indicate a large potential of these materials for off-resonance piezoelectric actuators.
文摘The recent review for the Restriction of Hazardous Substances Directive(RoHS)by the expert committee,appointed by the European Union,stated that the replacement of PZT“…may be scientifically and technologically practical to a certain degree…”,although replacement“…is scientifically and technically still impractical in the majority of applications.”Thus,two decades of sustained research and development may be approaching fruition,at first limited to a minority of applications.Therefore,it is of paramount importance to assess the viability of lead-free piezoceramics over a broad range of application-relevant properties.These are identified and discussed in turn:1.Cost,2.Reproducibility,3.Mechanical and Thermal Properties,4.Electrical Conductivity,and 5.Lifetime.It is suggested that the worldwide efforts into the development of lead-free piezoceramics now require a broader perspective to bring the work to the next stage of development by supporting implementation into real devices.Guidelines about pertinent research requirements into a wide range of secondary properties,measurement techniques,and salient literature are provided.
基金Tsinghua University Initiative Scientific Research Program and National Nature Science Foundation of China(Grant Nos.50921061 and 51028202).
文摘Most widely used piezoelectric ceramics are based on Pb(Zr,Ti)O3(PZT)composition which has adverse environmental and health effects due to its high lead content.Environmental and safety concerns with respect to the utilization,recycling,and disposal of lead-based piezoelectric ceramics have induced a new surge in developing lead-free piezoelectric ceramics.Among all the lead-free ceramics,(K,Na)NbO3(KNN)has drawn increasing attention because of its well-balanced piezoelectric properties and better environmental compatibility.On basis of the author’s work,this review summarizes the progress that has been made in recent years on development of KNN-based piezoelectric ceramics,including crystallographic structure and phase transition analysis,pressurized solid-state sintering as well as liquid-phase-assisted sintering process,and poling treatment for property enhancement.All in all,KNN is a promising lead-free system,but more research is still required both from academic and industrial interests.
基金The authors thank Jianqiang Zhou for his technical help with SEM measurements. This work was supported by the National Natural Science Foundation of China (Grant No. 21371056) and the Fundamental Research Funds for the Central Universities (Grant No. 2015ZZD04).
文摘Lead-free (K0.5Na0.5)(Nb1-xGex)O3 (KNN-xGe, where x = 0-0.01) piezo- electric ceramics were prepared by conventional ceramic processing. The effects of Ge4+cation doping on the phase compositions, microstructure and electrical properties of KNN ceramics were studied. SEM images show that Ge4+ cation doping improved the sintering and promoted the grain growth of the KNN ceramics. Dielectric and ferroelectric measurements proved that Ge4+ cations substituted Nbs+ ions as acceptors, and the Curie temperature (Tc) shows an almost linear decrease with increasing the Ge4+ content. Combining this result with microstructure observations and electrical measurements, it is concluded that the optimal sintering temperature for KNN-xGe ceramics was 1020℃. Ge4+ doping less than 0.4 mol.% can improve the compositional homogeneity and piezoelectric properties of KNN ceramics. The KNN-xGe ceramics with x = 0.2% exhibited the best piezoelectric properties: piezoelectric constant d33 = 120 pC/N, planar electromechanical coupling coefficient kp = 34.7%, mechanical quality factor Qm = 130, and tanδ = 3.6%.
基金The authors would like to thank National University of Mar del Plata(Argentina)Project(15/G577)for providing financial support.
文摘Doping effects of CuO on the sintering behavior and electrical properties of 0.94(Bi_(0.5)Na_(0.5))TiO_(3)-0.06(BaTiO_(3))-xCuO(BNT-BT6-xCu)lead-free piezoceramic obtained by the conventional solid-state reaction method were investigated.Regarding the undoped system,it is already known that it presents the best densification values when it is sintered at 1150℃,however,the doped system was sintered at 1150℃,1100℃,1050℃,1025℃,and 975℃ to determine the effect of Cu on the densification process.Therefore,it was obtained that the CuO-doped samples sintered at 1050℃ presented the highest density values and therefore were the ones chosen to perform the characterization tests together with the undoped system.The samples were characterized using X-ray diffraction(XRD),Raman microspectroscopy,and scanning electron microscopy(SEM)analysis,whereas the ferroelectric and dielectric properties were evaluated by means of ferroelectric hysteresis loops and impedance spectroscopy studies.As a result,the addition of CuO allowed an improvement in sinterability and densification,with the subsequent grain growth,and the improvement of the piezoelectric coefficient(d_(33)).
基金partly supported by the CAS/SAFEA International Partnership Program for Creative Research Teams
文摘Porous piezoceramics are of interest for applications such as low frequency hydrophones. Porous(K,Na,Li)NbO_3-BaZrO_3-(Bi,Na)TiO_3 lead-free piezoceramics having vertical morphotropic phase boundary composition were fabricated by adding 30 μm-diameter acrylic resins. The ceramic powders were synthesized by a conventional solid-state reaction method and then mixed with the resins. Volume ratios of ceramics to resin were 90:10, 80:20, 70:30, and 60:40. After burning out the resins and binder, the specimens were sintered at 1170–1190 ℃ for 5 h. The porous specimen with 30 vol% acrylic resin had longitudinal acoustic velocity of 4518 m/s, acoustic impedance of 16.44 Mkg/(m^2·s), and hydrostatic figure of merit of 405×10^(-15)m^2/N. The hydrostatic figure of merit was about 4 times of that of monolithic ceramics. Compared with monolithic ceramics, the porous specimen had a better transducer sensitivity for underwater applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.21825102,22235002,52172181,and 22105017)Key R&D Plan of the Ministry of Science and Technology of China(Grant No.2022YFB3204000)。
文摘Advanced lead-free energy storage ceramics play an indispensable role in next-generation pulse power capacitors market.Here,an ultrahigh energy storage density of~13.8 J cm^(-3)and a large efficiency of~82.4%are achieved in high-entropy lead-free relaxor ferroelectrics by increasing configuration entropy,named high-entropy strategy,realizing nearly ten times growth of energy storage density compared with low-entropy material.Evolution of energy storage performance and domain structure with increasing configuration entropy is systematically revealed for the first time.The achievement of excellent energy storage properties should be attributed to the enhanced random field,decreased nanodomain size,strong multiple local distortions,and improved breakdown field.Furthermore,the excellent frequency and fatigue stability as well as charge/discharge properties with superior thermal stability are also realized.The significantly enhanced comprehensive energy storage performance by increasing configuration entropy demonstrates that high entropy is an effective but convenient strategy to design new high-performance dielectrics,promoting the development of advanced capacitors.
基金support from the Fundamental Research Funds for the National Key Research and Development Program of China(Grant no.2018YFB2200500)the National Natural Science Foundation of China(61975023,51775070,22072010,61875211)+5 种基金the Guangdong Province International Scientific and Technological Cooperation Projects(grant number 2020A0505100011)the CAS Interdisciplinary Innovation Team and the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)the Opening Project of State Key Laboratory of Advanced Technology for Float Glassthe State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology,No.2021-KF-19)the Natural Science Foundation of Chongqing(Grant No.cstc2021ycjh-bgzxm0181)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K202100601).
文摘All-inorganic lead-free palladium(Pd)halogen perovskites with prominent optoelectronic properties provide admirable potential for selective photo-and electroreduction of CO_(2).But it remains unachieved for effectively converting the CO_(2)to CO with high selectivity on Pd-based perovskites driven by solar light or electricity.Herein,high-quality Cs_(2)PdBr_(6)microcrystals and nanocrystals were synthesized through a facile antisolvent method.Among all the reported pure-phase perovskites,the Cs_(2)PdBr_(6)nanocrystals synthesized at 50℃performed the highest effectiveness on CO_(2)to CO conversion generating 73.8μmol g^(-1)of CO yield with 100%selectivity under visible light illumination(λ>420 nm)for 3 h.Meanwhile,for the first time,we report a new application of lead-free perovskites,in which they are applied to electrocatalysis of CO_(2)reduction reaction.Noticeably,they showed significant electrocatalytic activity(Faradaic yield:78%for CO)and operation stability(10 h).And the surface reaction intermediates were dynamically monitored and precisely unraveled according to the in situ diffuse reflectance infrared Fourier transform spectra investigation.In combination with the density functional theory calculation,the reaction mechanism and pathways were revealed.This work not only provides significant strategies to enhance the photocatalytic performance of perovskites,but also shows excellent potential for their application in electrocatalysis.
基金supported by the National Natural Science Foundation of China(nos.62104163 and 62174112)the National Key Research and Development Program of China(no.2019YFE0120000)+3 种基金the Fundamental Research Funds for the Central Universities(nos.2021SCU12057 and YJ201955)the Science and Technology Program of Sichuan Province(no.2020JDJQ0030)the Natural Science Foundation of Sichuan Province(no.2022NSFSC1183)Engineering Featured Team Fund of Sichuan University(2020SCUNG102).
文摘Development of tin(Sn)-based perovskite solar cells(PSCs)largely lags behind that of lead counterparts due to fast crystallization process of Sn perovskite and numerous defects in both bulk and surface of Sn perovskite films.Herein,this work reports a facile strategy of introducing 4-fluorobenzylammonium iodide(FBZAI)as additives into Sn perovskite precursor to synergistically modulate the roles of benzylamine and fluorine in Sn-based PSCs.Incorporation of FBZAI can increase crystallinity,passivate defects,and inhibit the oxidation of Sn^(2+),leading to suppression of nonradiative recombination and enhancement of charge transport and collection in devices.As a result,the best-performing Sn-based PSC with the FBZAI additive achieves the maximum PCE of 13.85%with the enhanced fill factor of 77.8%and open-circuit voltage of 0.778 V.Our unencapsulated device exhibits good stability by maintaining 95%of its initial PCE after 160 days of storage.
基金supported by the National Natural Science Foundation of China(21374106)National Natural Science Foundation of China(11774318,12074347,and U1304212)National Key Research Program of China(2016YFA0200104).
文摘Development of lead-free halide perovskites that are innocuous and stable has become an attractive trend in resistive random access memory(RRAM)fields.However,their inferior memory properties compared with the lead-based analogs hinder their commercialization.Herein,the lead-free Cs_(3)Bi_(2)Br_(9)perovskite quantum dot(PQD)-based RRAMs are reported with outstanding memory performance,where Cs_(3)Bi_(2)Br_(9)quantum dots(QDs)are synthesized via a modified ligand-assisted recrystallization process.This is the first report of applying Cs_(3)Bi_(2)Br_(9)QDs as the switching layer for RRAM device.The Cs_(3)Bi_(2)Br_(9)QD device demonstrates nonvolatile resistive switching(RS)effect with large ON/OFF ratio of 105,low set voltage of-0.45 V,as well as good reliability,reproducibility,and flexibility.Concurrently,the device exhibits the notable tolerance toward moisture,heat and light illumination,and long-term stability of 200 days.More impressively,the device shows the reliable light-modulated RS behavior,and therefrom the logic gate operations including"AND"and"OR"are implemented,foreboding its prospect in logic circuits integrated with storage and computation.Such multifunctionality of device could be derived from the unique 2D layered crystal structure,small particle size,quantum confinement effect,and photoresponse of Cs_(3)Bi_(2)Br_(9)QDs.This work provides the strategy toward the high-performance RRAMs based on stable and eco-friendly perovskites for future applications.
基金This work is funded by National Natural Science Foundation of China(Nos.61904023,11974063)Fundamental Research Funds for the Cen-tral Universities(2021CDJQY-022)Natural Science Foundation of Chongqing(No.cstc2019jcyj-bshX0078,cstc2020jcyj-jqX0028).
文摘Yellow light-emitting diodes(LEDs) as soft light have attracted abundant attention in lithography room, museum and art gallery. However, the development of efficient yellow LEDs lags behind green and blue LEDs, and the available perovskites yellow LEDs suffer from the instability. Herein, a pressure-assisted cooling method is proposed to grow lead-free CsCu2I3single crystals, which possess uniform surface morphology and enhanced photoluminescence quantum yield(PLQY) stability, with only 10% PLQY losses after being stored in air after 5000 h.Then, the single crystals used for yellow LEDs without encapsulation exhibit a decent Correlated Color Temperature(CCT) of 4290 K, a Commission Internationale de l’Eclairage(CIE) coordinate of(0.38, 0.41), and an excellent 570-h operating stability under heating temperature of 100°C. Finally, the yellow LEDs facilitate the application in wireless visible light communication(VLC), which show a-3 dB bandwidth of 21.5 MHz and a high achievable data rate of 219.2 Mbps by using orthogonal frequency division multiplexing(OFDM) modulation with adaptive bit loading. The present work not only promotes the development of lead-free single crystals, but also inspires the potential of CsCu2I3in the field of yellow illumination and wireless VLC.
基金Funded by the National Natural Science Foundation of China (No.61704113)the Shenzhen Science and Technology Program (No.GJHZ20210705141805015)the Scientific Research Project in School-level (SZIIT2019KJ026)。
文摘To reduce the coercive field of Na_(0.5)Bi_(0.5)TiO_(3),Ba TiO_(3)were added as dopant materials.Then the(1-x)Na_(0.5)Bi_(0.5)TiO_(3)-xBaTiO_(3)ceramic samples were produced in solid synthetic way.The optimum preparation condition and piezoelectric properties of the samples were investigated.The XRD results show that the fabric transites from rhombohedral to tetragonal gradually with the substitution of the Ba^(2+).The morphotropic phase boundaries(MPB)exists in the composition range of 0.06.