期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
Detection of Cocoa Leaf Diseases Using the CNN-Based Feature Extractor and XGBOOST Classifier
1
作者 Kouassi Simeon Kouassi Mamadou Diarra +1 位作者 Kouassi Hilaire Edi Brou Jean-Claude Koua 《Open Journal of Applied Sciences》 2024年第10期2955-2972,共18页
Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this p... Among all the plagues threatening cocoa cultivation in general, and particularly in West Africa, the swollen shoot viral disease is currently the most dangerous. The greatest challenge in the fight to eradicate this pandemic remains its early detection. Traditional methods of swollen shoot detection are mostly based on visual observations, leading to late detection and/or diagnostic errors. The use of machine learning algorithms is now an alternative for effective plant disease detection. It is therefore crucial to provide efficient solutions to farmers’ cooperatives. In our study, we built a database of healthy and diseased cocoa leaves. We then explored the power of feature extractors based on convolutional neural networks such as VGG 19, Inception V3, DenseNet 201, and a custom CNN, combining their strengths with the XGBOOST classifier. The results of our experiments showed that this fusion of methods with XGBOOST yielded highly promising scores, outperforming the results of algorithms using the sigmoid function. These results were further consolidated by the use of evaluation metrics such as accuracy, mean squared error, F score, recall, and Matthews’s correlation coefficient. The proposed approach, combining state of the art feature extractors and the XGBOOST classifier, offers an efficient and reliable solution for the early detection of swollen shoot. Its implementation could significantly assist West African cocoa farmers in combating this devastating disease and preserving their crops. 展开更多
关键词 Machine Learning Cocoa leaf diseases Deep Learning Convolutional Neural Network Feature Extraction Image Recognition XGBOOST
下载PDF
Feature Extraction and Classification of Plant Leaf Diseases Using Deep Learning Techniques
2
作者 K.Anitha S.Srinivasan 《Computers, Materials & Continua》 SCIE EI 2022年第10期233-247,共15页
In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceo... In India’s economy, agriculture has been the most significantcontributor. Despite the fact that agriculture’s contribution is decreasing asthe world’s population grows, it continues to be the most important sourceof employment with a little margin of difference. As a result, there is apressing need to pick up the pace in order to achieve competitive, productive,diverse, and long-term agriculture. Plant disease misinterpretations can resultin the incorrect application of pesticides, causing crop harm. As a result,early detection of infections is critical as well as cost-effective for farmers.To diagnose the disease at an earlier stage, appropriate segmentation of thediseased component from the leaf in an accurate manner is critical. However,due to the existence of noise in the digitally captured image, as well asvariations in backdrop, shape, and brightness in sick photographs, effectiverecognition has become a difficult task. Leaf smut, Bacterial blight andBrown spot diseases are segmented and classified using diseased Apple (20),Cercospora (60), Rice (100), Grape (140), and wheat (180) leaf photos in thesuggested work. In addition, a superior segmentation technique for the ROIfrom sick leaves with living backdrop is presented here. Textural features of thesegmented ROI, such as 1st and 2nd order WPCA Features, are discoveredafter segmentation. This comprises 1st order textural features like kurtosis,skewness, mean and variance as well as 2nd procedure textural features likesmoothness, energy, correlation, homogeneity, contrast, and entropy. Finally,the segmented region of interest’s textural features is fed into four differentclassifiers, with the Enhanced Deep Convolutional Neural Network provingto be the most precise, with a 96.1% accuracy. 展开更多
关键词 Convolutional neural network wavelet based pca features leaf disease detection agriculture disease remedies bat algorithm
下载PDF
Identification of banana leaf disease based on KVA and GR-ARNet
3
作者 Jinsheng Deng Weiqi Huang +3 位作者 Guoxiong Zhou Yahui Hu Liujun Li Yanfeng Wang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第10期3554-3575,共22页
Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a... Banana is a significant crop,and three banana leaf diseases,including Sigatoka,Cordana and Pestalotiopsis,have the potential to have a serious impact on banana production.Existing studies are insufficient to provide a reliable method for accurately identifying banana leaf diseases.Therefore,this paper proposes a novel method to identify banana leaf diseases.First,a new algorithm called K-scale VisuShrink algorithm(KVA)is proposed to denoise banana leaf images.The proposed algorithm introduces a new decomposition scale K based on the semi-soft and middle course thresholds,the ideal threshold solution is obtained and substituted with the newly established threshold function to obtain a less noisy banana leaf image.Then,this paper proposes a novel network for image identification called Ghost ResNeSt-Attention RReLU-Swish Net(GR-ARNet)based on Resnet50.In this,the Ghost Module is implemented to improve the network's effectiveness in extracting deep feature information on banana leaf diseases and the identification speed;the ResNeSt Module adjusts the weight of each channel,increasing the ability of banana disease feature extraction and effectively reducing the error rate of similar disease identification;the model's computational speed is increased using the hybrid activation function of RReLU and Swish.Our model achieves an average accuracy of 96.98%and a precision of 89.31%applied to 13,021 images,demonstrating that the proposed method can effectively identify banana leaf diseases. 展开更多
关键词 banana leaf diseases image denoising Ghost Module Res Ne St Module Convolutional Neural Networks GR-ARNet
下载PDF
Olive Leaf Disease Detection via Wavelet Transform and Feature Fusion of Pre-Trained Deep Learning Models
4
作者 Mahmood A.Mahmood Khalaf Alsalem 《Computers, Materials & Continua》 SCIE EI 2024年第3期3431-3448,共18页
Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wa... Olive trees are susceptible to a variety of diseases that can cause significant crop damage and economic losses.Early detection of these diseases is essential for effective management.We propose a novel transformed wavelet,feature-fused,pre-trained deep learning model for detecting olive leaf diseases.The proposed model combines wavelet transforms with pre-trained deep-learning models to extract discriminative features from olive leaf images.The model has four main phases:preprocessing using data augmentation,three-level wavelet transformation,learning using pre-trained deep learning models,and a fused deep learning model.In the preprocessing phase,the image dataset is augmented using techniques such as resizing,rescaling,flipping,rotation,zooming,and contrasting.In wavelet transformation,the augmented images are decomposed into three frequency levels.Three pre-trained deep learning models,EfficientNet-B7,DenseNet-201,and ResNet-152-V2,are used in the learning phase.The models were trained using the approximate images of the third-level sub-band of the wavelet transform.In the fused phase,the fused model consists of a merge layer,three dense layers,and two dropout layers.The proposed model was evaluated using a dataset of images of healthy and infected olive leaves.It achieved an accuracy of 99.72%in the diagnosis of olive leaf diseases,which exceeds the accuracy of other methods reported in the literature.This finding suggests that our proposed method is a promising tool for the early detection of olive leaf diseases. 展开更多
关键词 Olive leaf diseases wavelet transform deep learning feature fusion
下载PDF
Real-Time Multiple Guava Leaf Disease Detection from a Single Leaf Using Hybrid Deep Learning Technique 被引量:1
5
作者 Javed Rashid Imran Khan +3 位作者 Ghulam Ali Shafiq ur Rehman Fahad Alturise Tamim Alkhalifah 《Computers, Materials & Continua》 SCIE EI 2023年第1期1235-1257,共23页
The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non... The guava plant has achieved viable significance in subtropics and tropics owing to its flexibility to climatic environments,soil conditions and higher human consumption.It is cultivated in vast areas of Asian and Non-Asian countries,including Pakistan.The guava plant is vulnerable to diseases,specifically the leaves and fruit,which result in massive crop and profitability losses.The existing plant leaf disease detection techniques can detect only one disease from a leaf.However,a single leaf may contain symptoms of multiple diseases.This study has proposed a hybrid deep learning-based framework for the real-time detection of multiple diseases from a single guava leaf in several steps.Firstly,Guava Infected Patches Modified MobileNetV2 and U-Net(GIP-MU-NET)has been proposed to segment the infected guava patches.The proposed model consists of modified MobileNetv2 as an encoder,and the U-Net model’s up-sampling layers are used as a decoder part.Secondly,the Guava Leaf SegmentationModel(GLSM)is proposed to segment the healthy and infected leaves.In the final step,the Guava Multiple Leaf Diseases Detection(GMLDD)model based on the YOLOv5 model detects various diseases from a guava leaf.Two self-collected datasets(the Guava Patches Dataset and the Guava Leaf Diseases Dataset)are used for training and validation.The proposed method detected the various defects,including five distinct classes,i.e.,anthracnose,insect attack,nutrition deficiency,wilt,and healthy.On average,the GIP-MU-Net model achieved 92.41%accuracy,the GLSM gained 83.40%accuracy,whereas the proposed GMLDD technique achieved 73.3%precision,73.1%recall,71.0%mAP@0.5 and 50.3 mAP@0.5:0.95 scores for all the aforesaid classes. 展开更多
关键词 Guava leaf diseases guava leaf segmentation guava patches segmentation multiple leaf diseases guava leaf diseases dataset
下载PDF
A new approach to learning and recognizing leaf diseases from individual lesions using convolutional neural networks
6
作者 Lawrence C.Ngugi Moataz Abdelwahab Mohammed Abo-Zahhad 《Information Processing in Agriculture》 EI CSCD 2023年第1期11-27,共17页
Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the ... Leaf disease recognition using image processing and deep learning techniques is currently a vibrant research area.Most studies have focused on recognizing diseases from images of whole leaves.This approach limits the resulting models’ability to estimate leaf disease severity or identify multiple anomalies occurring on the same leaf.Recent studies have demonstrated that classifying leaf diseases based on individual lesions greatly enhances disease recognition accuracy.In those studies,however,the lesions were laboriously cropped by hand.This study proposes a semi-automatic algorithm that facilitates the fast and efficient preparation of datasets of individual lesions and leaf image pixel maps to overcome this problem.These datasets were then used to train and test lesion classifier and semantic segmentation Convolutional Neural Network(CNN)models,respectively.We report that GoogLeNet’s disease recognition accuracy improved by more than 15%when diseases were recognized from lesion images compared to when disease recognition was done using images of whole leaves.A CNN model which performs semantic segmentation of both the leaf and lesions in one pass is also proposed in this paper.The proposed KijaniNet model achieved state-of-the-art segmentation performance in terms of mean Intersection over Union(mIoU)score of 0.8448 and 0.6257 for the leaf and lesion pixel classes,respectively.In terms of mean boundary F1 score,the KijaniNet model attained 0.8241 and 0.7855 for the two pixel classes,respectively.Lastly,a fully automatic algorithm for leaf disease recognition from individual lesions is proposed.The algorithm employs the semantic segmentation network cascaded to a GoogLeNet classifier for lesion-wise disease recognition.The proposed fully automatic algorithm outperforms competing methods in terms of its superior segmentation and classification performance despite being trained on a small dataset. 展开更多
关键词 Deep learning Precision agriculture leaf disease recognition Complex background removal leaf image segmentation Lesion classification
原文传递
Detection of maize leaf diseases using improved MobileNet V3-small
7
作者 Ang Gao Aijun Geng +3 位作者 Yuepeng Song Longlong Ren Yue Zhang Xiang Han 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第3期225-232,共8页
In order to realize the intelligent identification of maize leaf diseases for accurate prevention and control,this study proposed a maize disease detection method based on improved MobileNet V3-small,using a UAV to co... In order to realize the intelligent identification of maize leaf diseases for accurate prevention and control,this study proposed a maize disease detection method based on improved MobileNet V3-small,using a UAV to collect maize disease images and establish a maize disease dataset in a complex context,and explored the effects of data expansion and migration learning on model recognition accuracy,recall rate,and F1-score instructive evaluative indexes,and the results show that the two approaches of data expansion and migration learning effectively improved the accuracy of the model.The structured compression of MobileNet V3-small bneck layer retains only 6 layers,the expansion multiplier of each layer was redesigned,32-fold fast downsampling was used in the first layer,and the location of the SE module was optimized.The improved model had an average accuracy of 79.52%in the test set,a recall of 77.91%,an F1-score of 78.62%,a model size of 2.36 MB,and a single image detection speed of 9.02 ms.The detection accuracy and speed of the model can meet the requirements of mobile or embedded devices.This study provides technical support for realizing the intelligent detection of maize leaf diseases. 展开更多
关键词 maize leaf disease image recognition model compression MobileNetV3-small
原文传递
Improved multi-scale inverse bottleneck residual network based on triplet parallel attention for apple leaf disease identification
8
作者 Lei Tang Jizheng Yi Xiaoyao Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第3期901-922,共22页
Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from ima... Accurate diagnosis of apple leaf diseases is crucial for improving the quality of apple production and promoting the development of the apple industry. However, apple leaf diseases do not differ significantly from image texture and structural information. The difficulties in disease feature extraction in complex backgrounds slow the related research progress. To address the problems, this paper proposes an improved multi-scale inverse bottleneck residual network model based on a triplet parallel attention mechanism, which is built upon ResNet-50, while improving and combining the inception module and ResNext inverse bottleneck blocks, to recognize seven types of apple leaf(including six diseases of alternaria leaf spot, brown spot, grey spot, mosaic, rust, scab, and one healthy). First, the 3×3 convolutions in some of the residual modules are replaced by multi-scale residual convolutions, the convolution kernels of different sizes contained in each branch of the multi-scale convolution are applied to extract feature maps of different sizes, and the outputs of these branches are multi-scale fused by summing to enrich the output features of the images. Second, the global layer-wise dynamic coordinated inverse bottleneck structure is used to reduce the network feature loss. The inverse bottleneck structure makes the image information less lossy when transforming from different dimensional feature spaces. The fusion of multi-scale and layer-wise dynamic coordinated inverse bottlenecks makes the model effectively balances computational efficiency and feature representation capability, and more robust with a combination of horizontal and vertical features in the fine identification of apple leaf diseases. Finally, after each improved module, a triplet parallel attention module is integrated with cross-dimensional interactions among channels through rotations and residual transformations, which improves the parallel search efficiency of important features and the recognition rate of the network with relatively small computational costs while the dimensional dependencies are improved. To verify the validity of the model in this paper, we uniformly enhance apple leaf disease images screened from the public data sets of Plant Village, Baidu Flying Paddle, and the Internet. The final processed image count is 14,000. The ablation study, pre-processing comparison, and method comparison are conducted on the processed datasets. The experimental results demonstrate that the proposed method reaches 98.73% accuracy on the adopted datasets, which is 1.82% higher than the classical ResNet-50 model, and 0.29% better than the apple leaf disease datasets before preprocessing. It also achieves competitive results in apple leaf disease identification compared to some state-ofthe-art methods. 展开更多
关键词 multi-scale module inverse bottleneck structure triplet parallel attention apple leaf disease
下载PDF
Detection and Identification of Phytoplasma of Cleome rutidosperma in Areca Palm Yellow Leaf Disease Field
9
作者 Zhaowei LIN Xiaoqing NIU +3 位作者 Shida LONG Qinghua TANG Dejie YANG Weiwei SONG 《Plant Diseases and Pests》 2024年第4期7-12,共6页
[Objectives]The paper was to detect and identify the phytoplasma of Cleome rutidosperma in areca palm yellow leaf disease(YLD)field in Wenchang City,Hainan Province,China.[Methods]The nested PCR technique was employed... [Objectives]The paper was to detect and identify the phytoplasma of Cleome rutidosperma in areca palm yellow leaf disease(YLD)field in Wenchang City,Hainan Province,China.[Methods]The nested PCR technique was employed to amplify the phytoplasma 16S rDNA of C.rutidosperma samples,followed by sequence analysis.Concurrently,this study examined C.rutidosperma in YLD field,collecting symptomatic leaves for phytoplasma detection.[Results]The 16S rDNA sequence of the C.rutidosperma witches'-broom phytoplasma was found to be identical to that of the HNWC5 strain associated with areca palm yellows phytoplasma,leading to the identification of this phytoplasma as belonging to the 16SrII-A subgroup.Field investigations revealed a higher incidence of C.rutidosperma in areca palm fields,with symptoms of leaf yellows observed in six of these fields.Quantitative PCR(qPCR)analysis confirmed the presence of phytoplasma infection in these instances.[Conclusions]Through the analysis of geographical distribution,sequence alignment,and field occurrence data,a significant correlation has been identified between witches'broom disease and YLD.It is proposed that the former may act as an intermediate host for the areca palm yellows phytoplasma. 展开更多
关键词 Areca palm yellow leaf disease PHYTOPLASMA Cleome rutidosperma IDENTIFICATION Detection
下载PDF
Establishment and Application of Prevention and Control Techniques of New Sugarcane White Leaf Disease
10
作者 Xiaoyan WANG Ruonan QIU +8 位作者 Hong XU Yulong JIANG Rongyue ZHANG Fengyun ZHANG Ming GONG Jinxue LEI Hongli SHAN Jie LI Yingkun HUANG 《Agricultural Biotechnology》 2024年第4期18-20,27,共4页
Aiming at the basic and key technical problems in prevention and control of sugarcane white leaf disease(SCWL),this study systematically overcame key technical bottleneck of prevention and control of new SCWL after 10... Aiming at the basic and key technical problems in prevention and control of sugarcane white leaf disease(SCWL),this study systematically overcame key technical bottleneck of prevention and control of new SCWL after 10 years of collaborative research,and achieved several innovative achievements.SCWL phytoplasmas newly recorded in China and the new subgroup of SCWL phytoplasmas(16SrXI-D)were discovered for the first time in Yunnan,and the whole genome analysis of the epidemic subgroup was completed.The main transmission source of SCWL pathogens has been identified as infected seed canes,and Tettigoniella viridis and Clovia conifer were newly discovered as vectors for virus transmission.The disease resistance of 25 main varieties was identified,and 10 control varieties were selected.The prevention and control strategy of"emphasizing early warning,strictly carrying out quarantine,blocking the vectors and controlling residual plants"was put forward,and a comprehensive prevention technique was established through integration of various techniques,and standardized technical regulations were formulated for demonstration application.The promotion and application of these achievements have realized scientific prevention and control of SCWL,effectively curbed the spread of SCWL,and ensured the safety of sugarcane producing areas in China,achieving great economic,social and ecological benefits and providing technical support for high-quality development,loss reduction and efficiency improvement of China's sugar industry. 展开更多
关键词 Sugarcane white leaf disease Comprehensive prevention and control APPLICATION
下载PDF
Genomic Selection for Frogeye Leaf Spot Resistance in Soybean
11
作者 Yao Lanning Chen Yizhi +4 位作者 Li Haochen Zhang Yue Xia Mingyu Ning Shicheng Ning Hailong 《Journal of Northeast Agricultural University(English Edition)》 CAS 2024年第1期11-19,共9页
Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of... Soybean frogeye leaf spot(FLS) disease is a global disease affecting soybean yield, especially in the soybean growing area of Heilongjiang Province. In order to realize genomic selection breeding for FLS resistance of soybean, least absolute shrinkage and selection operator(LASSO) regression and stepwise regression were combined, and a genomic selection model was established for 40 002 SNP markers covering soybean genome and relative lesion area of soybean FLS. As a result, 68 molecular markers controlling soybean FLS were detected accurately, and the phenotypic contribution rate of these markers reached 82.45%. In this study, a model was established, which could be used directly to evaluate the resistance of soybean FLS and to select excellent offspring. This research method could also provide ideas and methods for other plants to breeding in disease resistance. 展开更多
关键词 LASSO regression stepwise regression genomic selection model SOYBEAN frogeye leaf spot(FLS)disease
下载PDF
Automatic grape leaf diseases identification via UnitedModel based on multiple convolutional neural networks 被引量:10
12
作者 Miaomiao Ji Lei Zhang Qiufeng Wu 《Information Processing in Agriculture》 EI 2020年第3期418-426,共9页
Grape diseases are main factors causing serious grapes reduction.So it is urgent to develop an automatic identification method for grape leaf diseases.Deep learning techniques have recently achieved impressive success... Grape diseases are main factors causing serious grapes reduction.So it is urgent to develop an automatic identification method for grape leaf diseases.Deep learning techniques have recently achieved impressive successes in various computer vision problems,which inspires us to apply them to grape diseases identification task.In this paper,a united convolutional neural networks(CNNs)architecture based on an integrated method is proposed.The proposed CNNs architecture,i.e.,UnitedModel is designed to distinguish leaves with common grape diseases i.e.,black rot,esca and isariopsis leaf spot from healthy leaves.The combination of multiple CNNs enables the proposed UnitedModel to extract complementary discriminative features.Thus the representative ability of United-Model has been enhanced.The UnitedModel has been evaluated on the hold-out PlantVillage dataset and has been compared with several state-of-the-art CNN models.The experimental results have shown that UnitedModel achieves the best performance on various evaluation metrics.The UnitedModel achieves an average validation accuracy of 99.17%and a test accuracy of 98.57%,which can serve as a decision support tool to help farmers identify grape diseases. 展开更多
关键词 Grape leaf diseases IDENTIFICATION Multi-network integration method Convolutional neural network Deep learning
原文传递
Recognition and classification of paddy leaf diseases using Optimized Deep Neural network with Jaya algorithm 被引量:9
13
作者 S.Ramesh D.Vydeki 《Information Processing in Agriculture》 EI 2020年第2期249-260,共12页
In the agriculture field,one of the recent research topics is recognition and classification of diseases from the leaf images of a plant.The recognition of agricultural plant diseases by utilizing the image processing... In the agriculture field,one of the recent research topics is recognition and classification of diseases from the leaf images of a plant.The recognition of agricultural plant diseases by utilizing the image processing techniques will minimize the reliance on the farmers to protect the agricultural products.In this paper,Recognition and Classification of Paddy Leaf Diseases using Optimized Deep Neural Network with Jaya Algorithm is proposed.For the image acquisition the images of rice plant leaves are directly captured from the farm field for normal,bacterial blight,brown spot,sheath rot and blast diseases.In pre-processing,for the background removal the RGB images are converted into HSV images and based on the hue and saturation parts binary images are extracted to split the diseased and non-diseased part.For the segmentation of diseased portion,normal portion and background a clustering method is used.Classification of diseases is carried out by using Optimized Deep Neural Network with Jaya Optimization Algorithm(DNN_JOA).In order to precise the stability of this approach a feedback loop is generated in the post processing step.The experimental results are evaluated and compared with ANN,DAE and DNN.The proposed method achieved high accuracy of 98.9%for the blast affected,95.78%for the bacterial blight,92%for the sheath rot,94%for the brown spot and 90.57%for the normal leaf image. 展开更多
关键词 Paddy leaf diseases Optimized Deep Neural Network Jaya optimization algorithm K-means clustering Color features Texture features
原文传递
Recognition of grape leaf diseases using MobileNetV3 and deep transfer learning 被引量:4
14
作者 Xiang Yin Wenhua Li +1 位作者 Zhen Li Lili Yi 《International Journal of Agricultural and Biological Engineering》 SCIE CAS 2022年第3期184-194,共11页
Timely diagnosis and accurate identification of grape leaf diseases are decisive for controlling the spread of disease and ensuring the healthy development of the grape industry.The objective of this research was to p... Timely diagnosis and accurate identification of grape leaf diseases are decisive for controlling the spread of disease and ensuring the healthy development of the grape industry.The objective of this research was to propose a simple and efficient approach to improve grape leaf disease identification accuracy with limited computing resources and scale of training image dataset based on deep transfer learning and an improved MobileNetV3 model(GLD-DTL).A pre-training model was obtained by training MobileNetV3 using the ImageNet dataset to extract common features of the grape leaves.And the last convolution layer of the pre-training model was modified by adding a batch normalization function.A dropout layer followed by a fully connected layer was used to improve the generalization ability of the pre-training model and realize a weight matrix to quantify the scores of six diseases,according to which the Softmax method was added as the top layer of the modified networks to give probability distribution of six diseases.Finally,the grape leaf diseases dataset,which was constructed by processing the image with data augmentation and image annotation technologies,was input into the modified networks to retrain the networks to obtain the grape leaf diseases recognition(GLDR)model.Results showed that the proposed GLD-DTL approach had better performance than some recent approaches.The identification accuracy was as high as 99.84%while the model size was as small as 30 MB. 展开更多
关键词 grape leaf diseases real-time recognition deep transfer learning MobileNetV3
原文传递
Sunflower leaf diseases detection using image segmentation based on particle swarm optimization 被引量:9
15
作者 Vijai Singh 《Artificial Intelligence in Agriculture》 2019年第3期62-68,共7页
Sun flower(Helianthus annuus L.)is one of the important oil seed crops and potentially fit in agricultural system and oil production sector of India.Sunflower crop gets damaged by the impact of various diseases,insect... Sun flower(Helianthus annuus L.)is one of the important oil seed crops and potentially fit in agricultural system and oil production sector of India.Sunflower crop gets damaged by the impact of various diseases,insects and nematodes resulting in wide range of loss in production.Disease detection is possible through naked eye observation,but this method is unsuccessful when one has to monitor the large farms.As a solution to this problem,we developed and present a system for segmentation and classification of Sunflower leaf images.This research paper presents surveys conducted on different diseases classification techniques that can be used for sunflower leaf disease detection.Segmentation of Sunflower leaf images,which is an important aspect for disease classification,is done by using Particle swarm optimization algorithm.Satisfactory results have been given by the experiments done on leaf images.The average accuracy of classification of proposed algorithm is 98.0%compared to 97.6 and 92.7%reported in state-of-the-art methods. 展开更多
关键词 Image segmentation Soft computing techniques Sunflower leaf diseases Particle swarm optimization
原文传递
Lightweight Multi-scale Convolutional Neural Network for Rice Leaf Disease Recognition 被引量:1
16
作者 Chang Zhang Ruiwen Ni +2 位作者 Ye Mu Yu Sun Thobela Louis Tyasi 《Computers, Materials & Continua》 SCIE EI 2023年第1期983-994,共12页
In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of ... In the field of agricultural information,the identification and prediction of rice leaf disease have always been the focus of research,and deep learning(DL)technology is currently a hot research topic in the field of pattern recognition.The research and development of high-efficiency,highquality and low-cost automatic identification methods for rice diseases that can replace humans is an important means of dealing with the current situation from a technical perspective.This paper mainly focuses on the problem of huge parameters of the Convolutional Neural Network(CNN)model and proposes a recognitionmodel that combines amulti-scale convolution module with a neural network model based on Visual Geometry Group(VGG).The accuracy and loss of the training set and the test set are used to evaluate the performance of the model.The test accuracy of this model is 97.1%that has increased 5.87%over VGG.Furthermore,the memory requirement is 26.1M,only 1.6%of the VGG.Experiment results show that this model performs better in terms of accuracy,recognition speed and memory size. 展开更多
关键词 Rice leaf diseases deep learning lightweight convolution neural networks VGG
下载PDF
2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax 被引量:1
17
作者 Tian-Yao Li Chen Ye +8 位作者 Yi-Jie Zhang Jun-Xing Zhang Min Yang Xia-Hong He Xin-Yue Mei Yi-Xiang Liu You-Yong Zhu Hui-Chuan Huang Shu-Sheng Zhu 《Plant Diversity》 SCIE CAS CSCD 2023年第1期104-116,共13页
Compared with the use of monocultures in the field,cultivation of medicinal herbs in forests is an effective strategy to alleviate disease.Chemical interactions between herbs and trees play an important role in diseas... Compared with the use of monocultures in the field,cultivation of medicinal herbs in forests is an effective strategy to alleviate disease.Chemical interactions between herbs and trees play an important role in disease suppression in forests.We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves,identified the components via gas chromatography-mass spectrometry(GC-MS),and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing(RNA-seq).Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P.notoginseng to Alternaria panax.The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A.panax infection upregulated the expression of large number of genes,many of which are involved in transcription factor activity and the mitogen-activated protein kinase(MAPK) signaling pathway.Specifically,2,3-Butanediol spraying resulted in jasmonic acid(JA)-mediated induced systemic resistance(ISR) by activating MYC2 and ERF1.Moreover,2,3-Butanediol induced systemic acquired resistance(SAR) by upregulating pattern-triggered immunity(PTI)-and effector-triggered immunity(ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33.Overall,2,3-Butanediol from the leachates of pine needles could activate the resistance of P.notoginseng to leaf disease infection through ISR,SAR and camalexin biosynthesis.Thus,2,3-Butanediol is worth developing as a chemical inducer for agricultural production. 展开更多
关键词 Pinus armandii ALLELOPATHY HERBS Induce resistance Diversity leaf disease
下载PDF
A Lightweight Deep Learning-Based Model for Tomato Leaf Disease Classification
18
作者 Naeem Ullah Javed Ali Khan +4 位作者 Sultan Almakdi Mohammed S.Alshehri Mimonah Al Qathrady Eman Abdullah Aldakheel Doaa Sami Khafaga 《Computers, Materials & Continua》 SCIE EI 2023年第12期3969-3992,共24页
Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases... Tomato leaf diseases significantly impact crop production,necessitating early detection for sustainable farming.Deep Learning(DL)has recently shown excellent results in identifying and classifying tomato leaf diseases.However,current DL methods often require substantial computational resources,hindering their application on resource-constrained devices.We propose the Deep Tomato Detection Network(DTomatoDNet),a lightweight DL-based framework comprising 19 learnable layers for efficient tomato leaf disease classification to overcome this.The Convn kernels used in the proposed(DTomatoDNet)framework is 1×1,which reduces the number of parameters and helps in more detailed and descriptive feature extraction for classification.The proposed DTomatoDNet model is trained from scratch to determine the classification success rate.10,000 tomato leaf images(1000 images per class)from the publicly accessible dataset,covering one healthy category and nine disease categories,are utilized in training the proposed DTomatoDNet approach.More specifically,we classified tomato leaf images into Target Spot(TS),Early Blight(EB),Late Blight(LB),Bacterial Spot(BS),Leaf Mold(LM),Tomato Yellow Leaf Curl Virus(YLCV),Septoria Leaf Spot(SLS),Spider Mites(SM),Tomato Mosaic Virus(MV),and Tomato Healthy(H).The proposed DTomatoDNet approach obtains a classification accuracy of 99.34%,demonstrating excellent accuracy in differentiating between tomato diseases.The model could be used on mobile platforms because it is lightweight and designed with fewer layers.Tomato farmers can utilize the proposed DTomatoDNet methodology to detect disease more quickly and easily once it has been integrated into mobile platforms by developing a mobile application. 展开更多
关键词 CNN deep learning DTomatoDNet tomato leaf disease classification smart agriculture
下载PDF
Deep Convolutional Neural Networks for South Indian Mango Leaf Disease Detection and Classification
19
作者 Shaik Thaseentaj S.Sudhakar Ilango 《Computers, Materials & Continua》 SCIE EI 2023年第12期3593-3618,共26页
The South Indian mango industry is confronting severe threats due to various leaf diseases,which significantly impact the yield and quality of the crop.The management and prevention of these diseases depend mainly on ... The South Indian mango industry is confronting severe threats due to various leaf diseases,which significantly impact the yield and quality of the crop.The management and prevention of these diseases depend mainly on their early identification and accurate classification.The central objective of this research is to propose and examine the application of Deep Convolutional Neural Networks(CNNs)as a potential solution for the precise detection and categorization of diseases impacting the leaves of South Indian mango trees.Our study collected a rich dataset of leaf images representing different disease classes,including Anthracnose,Powdery Mildew,and Leaf Blight.To maintain image quality and consistency,pre-processing techniques were employed.We then used a customized deep CNN architecture to analyze the accuracy of South Indian mango leaf disease detection and classification.This proposed CNN model was trained and evaluated using our collected dataset.The customized deep CNN model demonstrated high performance in experiments,achieving an impressive 93.34%classification accuracy.This result outperformed traditional CNN algorithms,indicating the potential of customized deep CNN as a dependable tool for disease diagnosis.Our proposed model showed superior accuracy and computational efficiency performance compared to other basic CNN models.Our research underscores the practical benefits of customized deep CNNs for automated leaf disease detection and classification in South Indian mango trees.These findings support deep CNN as a valuable tool for real-time interventions and improving crop management practices,thereby mitigating the issues currently facing the South Indian mango industry. 展开更多
关键词 South Indian mango tree customized deep CNN mango leaf disease CLASSIFICATION ACCURACY
下载PDF
Establishment and Application of Identification Methods for Resistance to Sugarcane White Leaf Disease(SCWL)
20
作者 Wenfeng LI Rongyue ZHANG +4 位作者 Xiaoyan WANG Hongli SHAN Jie LI Yinhu LI Yingkun HUANG 《Agricultural Biotechnology》 CAS 2023年第1期12-15,共4页
[Objectives]This study was conducted to establish simple, efficient, stable, standardized and practical identification methods for sugarcane resistance to white leaf disease(SCWL), and promote the breeding for sugarca... [Objectives]This study was conducted to establish simple, efficient, stable, standardized and practical identification methods for sugarcane resistance to white leaf disease(SCWL), and promote the breeding for sugarcane resistance to SCWL. [Methods]The identification technology of sugarcane resistance to SCWL was systematically studied and explored from the aspects of sugarcane material treatment and planting, inoculation liquid preparation, inoculation method, disease investigation, grading standard formulation, etc., and two sets of simple, efficient, stable, standardized and practical accurate identification methods for sugarcane resistance to SCWL were created for the first time, namely, the seed cane coating inoculation method and the stem-cutting inoculation method at the growth stage. The seed cane coating inoculation method includes the steps of directly screening SCWL phytoplasma, extracting juice from cane and adding 10 times of sterile water to prepare an inoculation liquid, spraying seed cane on plastic film to keep moisture, planting the inoculated materials in barrels in an insect-proof greenhouse for cultivation, investigating the incidence rate 30 d after inoculation, and evaluating the disease resistance according to the 1-5 level standard. The method of stem-cutting inoculation includes the steps of directly screening sugarcane stems carrying SCWL phytoplasma and adding 10 times of sterile water to prepare an inoculation liquid, cultivating the identification materials in an insect-proof greenhouse, dropping 100 μl of the inoculation liquid into each root incision with a pipette gun at the age of 6 months, investigating the incidence rate 20 d after planting, and evaluating the disease resistance according to the 1-5 level standard. [Results] The two methods are similar to the natural transmission method. After inoculation, SCML occurred significantly, with high sensitivity and good reproducibility. The results of resistance identification were consistent with those of natural disease in the field. Through the two inoculation methods and field natural disease investigation, the resistance of 10 main cultivars to SCML was identified, which was true and reliable. [Conclusions] This study can provide standard varieties for identification of SCML resistance in the future. 展开更多
关键词 Sugarcane white leaf disease Inoculation technology Seed cane-spraying inoculation Stem-cutting inoculation method Identification of disease resistance
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部