期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Latitudinal variation of leaf morphological traits from species to communities along a forest transect in eastern China 被引量:10
1
作者 王瑞丽 于贵瑞 +3 位作者 何念鹏 王秋凤 赵宁 徐志伟 《Journal of Geographical Sciences》 SCIE CSCD 2016年第1期15-26,共12页
Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific... Comprehensive information on geographic patterns of leaf morphological traits in Chinese forests is still scarce.To explore the spatial patterns of leaf traits,we investigated leaf area(LA),leaf thickness(LT),specific leaf area(SLA),and leaf dry matter content(LDMC) across 847 species from nine typical forests along the North-South Transect of Eastern China(NSTEC) between July and August 2013,and also calculated the community weighted means(CWM) of leaf traits by determining the relative dominance of each species.Our results showed that,for all species,the means(± SE) of LA,LT,SLA,and LDMC were 2860.01 ± 135.37 mm2,0.17 ± 0.003 mm,20.15 ± 0.43 m2 kg–1,and 316.73 ± 3.81 mg g–1,respectively.Furthermore,latitudinal variation in leaf traits differed at the species and community levels.Generally,at the species level,SLA increased and LDMC decreased as latitude increased,whereas no clear latitudinal trends among LA or LT were found,which could be the result of shifts in plant functional types.When scaling up to the community level,more significant spatial patterns of leaf traits were observed(R2 = 0.46–0.71),driven by climate and soil N content.These results provided synthetic data compilation and analyses to better parameterize complex ecological models in the future,and emphasized the importance of scaling-up when studying the biogeographic patterns of plant traits. 展开更多
关键词 latitudinal pattern leaf morphological trait community weighted mean forest ecosystem North-South Transect of Eastern China
原文传递
Effects of Nitrogen Addition on Plant Functional Traits in Freshwater Wetland of Sanjiang Plain,Northeast China 被引量:14
2
作者 MAO Rong ZHANG Xinhou SONG Changchun 《Chinese Geographical Science》 SCIE CSCD 2014年第6期674-681,共8页
To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass... To clarify the responses of plant functional traits to nitrogen(N) enrichment, we investigated the whole-plant traits(plant height and aboveground biomass), leaf morphological(specific leaf area(SLA) and leaf dry mass content(LDMC)) and chemical traits(leaf N concentration(LNC) and leaf phosphorus(P) concentration(LPC)) of Deyeuxia angustifolia and Glyceria spiculosa following seven consecutive years of N addition at four rates(0 g N/(m2·yr), 6 g N/(m2·yr), 12 g N/(m2·yr) and 24 g N/(m2·yr)) in a freshwater marsh in the Sanjiang Plain, Northeast China. The results showed that, for both D. angustifolia and G. spiculosa, N addition generally increased plant height, leaf, stem and total aboveground biomass, but did not cause changes in SLA and LDMC. Moreover, increased N availability caused an increase in LNC, and did not affect LPC. Thus, N addition decreased leaf C∶N ratio, but caused an increase in leaf N∶P ratio, and did not affect leaf C∶P ratio. Our results suggest that, in the mid-term, elevated N loading does not alter leaf morphological traits, but causes substantial changes in whole-plant traits and leaf chemical traits in temperate freshwater wetlands. These may help to better understand the effects of N enrichment on plant functional traits and thus ecosystem structure and functioning in freshwater wetlands. 展开更多
关键词 nitrogen addition Deyeuxia angustifolia Glyceria spiculosa leaf chemical traits leaf morphological traits whole-planttraits Sanjiang Plain
下载PDF
Crown and leaf traits as predictors of subtropical tree sapling growth rates 被引量:20
3
作者 Ying Li Wenzel Kröber +2 位作者 Helge Bruelheide Werner Härdtle Goddert von Oheimb 《Journal of Plant Ecology》 SCIE CSCD 2017年第1期136-145,共10页
Aims Growth rates of plants are driven by factors that influence the amount of resources captured and the efficiency of resource use.In trees,the amount of light captured and the efficiency of light use strongly depen... Aims Growth rates of plants are driven by factors that influence the amount of resources captured and the efficiency of resource use.In trees,the amount of light captured and the efficiency of light use strongly depends on crown characteristics and leaf traits.Although theory predicts that both crown and leaf traits affect tree growth,few studies have yet to integrate these two types of traits to explain species-specific growth rates.Using 37 broad-leaved tree species of subtropical forests in SE China,we investigated how interspecific differences in wood volume growth rates were affected by crown and leaf traits.We tested the hypotheses that(i)larger crown dimensions promote growth rates,(ii)species-specific growth rates are positively related to leaf stomatal conductance,leaf water potential and leaf chemical components,and negatively related to leaf C/N and leaf toughness and(iii)the two sets of traits better explain growth rates in combination than either alone.Methods Our study was conducted in a large-scale forest Biodiversity and Ecosystem Functioning experiment in China(BEF-China),located in a mountainous region in Jiangxi Province.We related 17 functional traits(two crown dimension and three crown structure traits;six physiological and six morphological leaf traits)to the mean annual growth rate of wood volume of young trees of the studied species.Interrelationships between crown and leaf traits were analyzed using principal component analysis.Simple linear regression analysis was used to test the effect of each trait separately.We used multiple regression analysis to establish the relationship of growth rate to each set of traits(crown traits,physiological and morphological leaf traits)and to the combination of all types of traits.The coefficients of determination(R^(2)_(adj))of the best multiple regression models were compared to determine the relative explanatory power of crown and leaf traits and a combination of both.Important Findings The species-specific growth rates were not related to any of the single crown traits,but were related positively to leaf stomatal conductance and leaf water potential individually,and negatively to leaf toughness,with approximately 13%variance explained by each of the traits.Combinations of different crown traits did not significantly explain the species-specific growth rates,whereas combinations of either physiological or morphological leaf traits explained 24%and 31%,respectively.A combination of both crown and leaf traits explained 42%of variance in species-specific growth rates.We concluded that sets of traits related to carbon assimilation at the leaf-level and to overall amount of leaves exposed at the crown-level jointly explained species-specific growth rates better than either set of traits alone. 展开更多
关键词 BEF China crown characteristics physiological leaf traits morphological leaf traits wood volume
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部