The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,a...The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.展开更多
Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically st...Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.展开更多
[Objective] The aim was to carry out the quality research on a purple leaf mutant (PLM) of rice and provide the basis for applied research of purple rice.[Method] A newly discovered purple mutant of rice and its hyb...[Objective] The aim was to carry out the quality research on a purple leaf mutant (PLM) of rice and provide the basis for applied research of purple rice.[Method] A newly discovered purple mutant of rice and its hybrid filial generations (F1 and F2) were employed as the experimental materials to determine its characteristic indexes,such as grain type,chalky grain rate,chalkiness,1 000-grain weight,brown rice percentage,protein content,amylose content,gelatinization temperature and consistency.[Result] The grain type and brown rice percentage of the parent (pro-Z) both reached standard of Ⅰ Grade,while chalky grain rate,chalkiness,amylose content and consistency did not meet the requirements of the standard.The F2 generation displayed some optimized properties,including larger grain,lower amylose content,reduced chalkiness,lower chalky grain rate and softened consistency.[Conclusion] The majority of the characteristic indexes of pro-Z did not meet the requirements of standard,but the qualities of F2 generation were all optimized to some extent.展开更多
[Objective] M3 progenies of Jingnong 6 variety induced by EMS chemical mutagenesis were screened and identified for obtaining valuable mutation material.[Method] Azuki bean cultivar Jingnong 6 was treated with EMS.The...[Objective] M3 progenies of Jingnong 6 variety induced by EMS chemical mutagenesis were screened and identified for obtaining valuable mutation material.[Method] Azuki bean cultivar Jingnong 6 was treated with EMS.The mutation rate,mutation types,agronomic traits and yield components of the leaf mutants were analyzed.[Result] The results showed that there is the most abundant mutational type of leaf shape and the highest mutation frequency treated with 0.9% EMS for 24 hours.Comprehensive analysis on agronom...展开更多
The leaf is the main photosynthetic organ of plants,and it plays a significant role in the yield of crop species.Identifying the causal mutations and candidate genes that underlie leaf phenotypic variation is an impor...The leaf is the main photosynthetic organ of plants,and it plays a significant role in the yield of crop species.Identifying the causal mutations and candidate genes that underlie leaf phenotypic variation is an important breeding target in soybean grain yield improvement.An ethyl methyl sulfonate(EMS)-induced soybean mutant DWARFCRINKLEDLEAF1(DCL1)with an aberrant crinkled leaf phenotype was identified in the background of the soybean cultivar Zhongpin 661(Zp661).We constructed an F2 segregating population from a cross between Zp661 and DCL1 in order to investigate the genomic locus associated with the crinkled leaf trait.Using bulk segregant analysis(BSA)combined with the whole-genome resequencing method,the Euclidean distance(ED)correlation algorithm detected 12 candidate genomic regions with a total length of 20.32 Mb that were linked to the target trait.Following a comparative analysis of the sequence data for the wild-type and mutant pools,only one single nucleotide mutation(C:G>T:A)located on the first exon of Glyma.19G207100 was found to be associated with the trait.Candidate gene validation based on a CAPS marker derived from the detected single-nucleotide polymorphism(SNP)indicated a nucleotide polymorphism between the two parents.Therefore,our findings reveal that Glyma.19G207100,which is renamed as GLYCINE MAX DWARF CRINKLED LEAF 1(GmDCL1),is a promising candidate gene involved in the morphogenesis of the crinkled leaf trait of the soybean mutant DCL1.This study provides a basis for the functional validation of this gene,with prospects for soybean breeding targeting grain yield enhancement.展开更多
A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tille...A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.展开更多
The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with ...The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.展开更多
Leaf-color mutations are a widely-observed class of mutations, playing an important role in the study of chlorophyll biosynthesis and plant chloroplast structure, function, genetics and development. A naturally-occurr...Leaf-color mutations are a widely-observed class of mutations, playing an important role in the study of chlorophyll biosynthesis and plant chloroplast structure, function, genetics and development. A naturally-occurring leaf-color rice mutant, Baihuaidao 7, was analyzed. Mutant plants typically exhibited a green-white-green leaf-color progression, but this phenotype was only expressed in the presence of a stress signal induced by mechanical scarification such as transplantation. Prior to the appearance of white ~eaves, mutant plant growth, leaf color, chlorophyll content, and chloroplast ultrastructure appeared to be identical to those of the wild type. After the changeover to white leaf color, an examination of the mutated leaves revealed a decrease in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid content, a reduction in the number of chloroplast grana lamella and grana, and a gradual degradation of the thylakoid lamellas. At maturity, the mutant plant was etiolated and dwarfed compared with wild-type plants. Genetic analysis indicated that the leaf mutant character is controlled by a recessive nuclear gene. Genetic mapping of the mutant gene was performed using an F2 population derived from a Baihuaidao 7 ~ Jiangxi 1587 cross. The mutant gene was mapped to rice chromosome 11, positioned between InDel markers L59.2-7 and L64.8-11, which are separated by approximately 740.5 kb. The mutant gene is believed to be a new leaf-color mutant gene in rice, and is tentatively designated as gwgl.展开更多
Spotted leaf(spl)mutant is a type of leaf lesion mimic mutants in plants.We obtained some lesion mimic mutants from ethyl methane sulfonate(EMS)-mutagenized wheat(Triticum aestivum L.)cultivar Guomai 301(wild type,WT)...Spotted leaf(spl)mutant is a type of leaf lesion mimic mutants in plants.We obtained some lesion mimic mutants from ethyl methane sulfonate(EMS)-mutagenized wheat(Triticum aestivum L.)cultivar Guomai 301(wild type,WT),and one of them was named as white stripe leaf(wsl)mutant because of the white stripes on its leaves.Here we report the heredity and gene mapping of this novel wheat mutant wsl.There are many small scattered white stripes on the leaves of wsl throughout its whole growth period.As the plants grew,the white stripes became more severe and the necrotic area expanded.The mutant wsl grew only weakly before the jointing stage and gradually recovered after jointing.The length and width of the flag leaf,spike number per plant and thousand-grain weight of wsl were significantly lower than those of the WT.Genetic analysis indicated that the trait of white stripe leaf was controlled by a recessive gene locus,named as wsl,which was mapped on the short arm of chromosome 6 B by SSR marker assay.Four SSR markers in the F2 population of wsl×CS were linked to wsl in the order of Xgpw1079–Xwmc104–Xgwm508-wsl–Xgpw7651 at 7.1,5.2,8.7,and 4.4 c M,respectively and three SSR markers in the F2 population of wsl×Jimai 22 were linked to wsl in the order of Xgwm508–Xwmc494–Xgwm518-wsl at 3.5,1.6 and 8.2 c M,respectively.In comparison to the reference genome sequence of Chinese Spring(CS),wsl is located in a 91-Mb region from 88 Mb(Xgwm518)to 179 Mb(Xgpw7651)on chromosome 6 BS.Mutant wsl is a novel germplasm for studying the molecular mechanism of wheat leaf development.展开更多
A spotted-leaf mutant of rice HM143 was isolated from an EMS-induced IR64 mutant bank. Brown lesions randomly distributed on leaf blades were observed about 3 wk after sowing. The symptom lasted for the whole plant gr...A spotted-leaf mutant of rice HM143 was isolated from an EMS-induced IR64 mutant bank. Brown lesions randomly distributed on leaf blades were observed about 3 wk after sowing. The symptom lasted for the whole plant growth duration. Histochemical analysis indicated that cell death occurred in and around the site of necrotic lesions accompanied with accumulation of hydrogen hyperoxide. Agronomic traits were largely similar to the wild type IR64 except seed setting rate and 1 000-grain weight which were significantly decreased in the mutant. Disease resistance of the mutant to multiple races of Xanthomonas oryzae pv. oryzae was significantly enhanced. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively termed splHM143. In addition, using molecular markers and 1023 mutant type individuals from an F2 segregating population derived from the cross HM143/R9308, the spotted-leaf gene was finally delimited to an interval of 149 kb between markers XX25 and ID40 on the long arm of chromosome 4. splHM143 is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region.展开更多
A thermo-sensitive white stripe-leaf mutant (tws) was selected from the M2 progeny of a japonica variety, Jiahua 1, treated by ^60 Co γ-radiation. In comparison with the wild type parent, the mutant displayed a phe...A thermo-sensitive white stripe-leaf mutant (tws) was selected from the M2 progeny of a japonica variety, Jiahua 1, treated by ^60 Co γ-radiation. In comparison with the wild type parent, the mutant displayed a phenotype of white stripe on the 3rd and 4th leaves, but began to turn normal green on the 5th leaf when grown at low temperatures (20℃ and 24℃). Furthermore, the content of total chlorophyll showed an obvious decrease in the leaves with white stripe. These results suggest that the expression of the mutant trait was thermo-sensitive and correlated with the leaf age of seedlings. The genetic analysis indicated that the mutant trait was controlled by a single recessive nuclear gene, designated as tws. In addition, by using SSR markers and an F2 segregating population derived from the cross between the tws mutant and 9311, tws was mapped between the markers MM3907 and MM3928 with a physical distance of 86 kb on dce chromosome 4.展开更多
The interaction between rice host and its pathogen Xanthomonas oryzae pv. oryzae (Xoo) at cellular level was studied by using a resistant somaclonal mutant HX-3 and its susceptable donor Minghui 63. After inoculation ...The interaction between rice host and its pathogen Xanthomonas oryzae pv. oryzae (Xoo) at cellular level was studied by using a resistant somaclonal mutant HX-3 and its susceptable donor Minghui 63. After inoculation with Xoo strain Zhe 173 (Chinese pathotype Ⅳ), the activity of superoxide dismutase (SOD) and peroxidase (POD) in the callus of Minghui 63 was increased dramatically, and the active oxygen(O2 ) was produced at a higher rate; Meanwhile, the callus grew slowly with the reduction of protein content Compared to the activity of SOD and POD, the production rate of Oa and the fresh weight in HX-3 callus varied little after the inoculation It could be proposed that there were great differences between the resistance of HX-3 and Mighui 63 at cellular level. There was no difference detected concerning resistance to bacterial leaf blight in HX-3 between the plant and the callus.展开更多
Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this...Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this study,we investigated the protein expression profile of wheat Jimai5265yg mutant,which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency.Though TMT-labeling quantitative proteomics analysis,a total of 72 differential expressed proteins(DEPs)were obtained between the mutant and wild type(WT).GO analysis found that they significantly enriched in thylakoid membrane,pigment binding,magnesium chelatase activity and response to light intensity.KEGG analysis showed that they involved in photosynthesis-antenna protein as well as porphyrin and chlorophyll metabolism.Finally,118 RNA editing events were found between mutant and WT genotype.The A to C editing in the 3-UTR of TraesCS6D02G401500 lead to its high expression in mutant through removing the inhibition of tae-miR9781,which might have vital role in regulating the yellow-green mutant.This study provided some useful clues about the molecular basis of Jimai5265yg mutant as well as chlorophylls metabolism in wheat.展开更多
A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populati...A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populations were constructed by crossing with indica cultivars TN1 and Zhefu 802,respectively.Genetic analysis demonstrated that the phenotype was controlled by a single recessive nuclear gene.The closely linked simple sequence repeat(SSR) marker RM1155 was obtained from bulked segregant analysis.Subsequently,sequence tagged site(STS) markers were developed using the published rice genome sequence.Finally,RTL1 was located between an STS marker T1591 and an SSR marker RM1359,at the distances of 0.48 cM and 0.96 cM,respectively.These results will facilitate the cloning of the target gene in further studies.展开更多
Eight lines of temperature-responsive leaf colormutants induced by applying 300 Gy Gamma-ray irradiation to Thermo-sensitive genic malesterile line 2177s,were obtained through con-tinuous selection in seven generation...Eight lines of temperature-responsive leaf colormutants induced by applying 300 Gy Gamma-ray irradiation to Thermo-sensitive genic malesterile line 2177s,were obtained through con-tinuous selection in seven generations..Theleaves of these lines started to become greenafter the fourth leaf extension,and except展开更多
基金the National Natural Science Foundation of China(Grant No.32372652)the Liaoning Provincial Science and Technology Project of‘Jiebangguashuai’(Grant No.2022JH1/10400016)the Shenyang Academician and Expert Workstation Project(Grant No.2022-15).
文摘The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.
基金supported by grants from the Project of Creating High Quality,Disease Resistance and High Combining Ability CMS Lines(Grant No.cstc2018jscx-msybX0250)Chongqing Technology Innovation and Application Demonstration Project and the Project of High Photosynthetic Efficiency Rice Breeding Technology System(Grant No.2017YFD0100201)the National Key Research and Development Program“Seven Crops Breeding”.
文摘Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.
文摘[Objective] The aim was to carry out the quality research on a purple leaf mutant (PLM) of rice and provide the basis for applied research of purple rice.[Method] A newly discovered purple mutant of rice and its hybrid filial generations (F1 and F2) were employed as the experimental materials to determine its characteristic indexes,such as grain type,chalky grain rate,chalkiness,1 000-grain weight,brown rice percentage,protein content,amylose content,gelatinization temperature and consistency.[Result] The grain type and brown rice percentage of the parent (pro-Z) both reached standard of Ⅰ Grade,while chalky grain rate,chalkiness,amylose content and consistency did not meet the requirements of the standard.The F2 generation displayed some optimized properties,including larger grain,lower amylose content,reduced chalkiness,lower chalky grain rate and softened consistency.[Conclusion] The majority of the characteristic indexes of pro-Z did not meet the requirements of standard,but the qualities of F2 generation were all optimized to some extent.
基金Supported by Introducing Talent Fund of Beijing University of Agricul-tural(9997116025)Elite Teaching Fund of Beijing Education Committee(PXM2007-014207-04453)Prominent Elite Fund of Beijing Education Committee(PXM2007-014207-044560)~~
文摘[Objective] M3 progenies of Jingnong 6 variety induced by EMS chemical mutagenesis were screened and identified for obtaining valuable mutation material.[Method] Azuki bean cultivar Jingnong 6 was treated with EMS.The mutation rate,mutation types,agronomic traits and yield components of the leaf mutants were analyzed.[Result] The results showed that there is the most abundant mutational type of leaf shape and the highest mutation frequency treated with 0.9% EMS for 24 hours.Comprehensive analysis on agronom...
基金supported by the Platform of National Crop Germplasm Recourses of China and the Agricultural Science and Technology Innovation Program (ASTIP) of Chinese Academy of Agricultural Sciences
文摘The leaf is the main photosynthetic organ of plants,and it plays a significant role in the yield of crop species.Identifying the causal mutations and candidate genes that underlie leaf phenotypic variation is an important breeding target in soybean grain yield improvement.An ethyl methyl sulfonate(EMS)-induced soybean mutant DWARFCRINKLEDLEAF1(DCL1)with an aberrant crinkled leaf phenotype was identified in the background of the soybean cultivar Zhongpin 661(Zp661).We constructed an F2 segregating population from a cross between Zp661 and DCL1 in order to investigate the genomic locus associated with the crinkled leaf trait.Using bulk segregant analysis(BSA)combined with the whole-genome resequencing method,the Euclidean distance(ED)correlation algorithm detected 12 candidate genomic regions with a total length of 20.32 Mb that were linked to the target trait.Following a comparative analysis of the sequence data for the wild-type and mutant pools,only one single nucleotide mutation(C:G>T:A)located on the first exon of Glyma.19G207100 was found to be associated with the trait.Candidate gene validation based on a CAPS marker derived from the detected single-nucleotide polymorphism(SNP)indicated a nucleotide polymorphism between the two parents.Therefore,our findings reveal that Glyma.19G207100,which is renamed as GLYCINE MAX DWARF CRINKLED LEAF 1(GmDCL1),is a promising candidate gene involved in the morphogenesis of the crinkled leaf trait of the soybean mutant DCL1.This study provides a basis for the functional validation of this gene,with prospects for soybean breeding targeting grain yield enhancement.
基金supported by the grants from the National High Technology Research and Development Program of China(Grant No.2011AA10A101)the Natural Science Foundation of Zhejiang Province of China(Grant No.Y12C13003)the National Natural Science Foundation of China(Grant No.31201193)
文摘A new white striped leaf mutant wsll was discovered from Nipponbare mutated by ethyl methanesulfonate. The mutant showed white striped leaves at the seedling stage and the leaves gradually turned green after the tillering stage. The chlorophyll content of wsll was significantly lower than that of wild-type during the fourth leaf stage, tillering stage and booting stage. The numbers of chloroplast, grana and grana lamella were reduced and the thylakoids were degenerated in wsll compared with wild type. Genetic analysis showed that the wsll was controlled by a single recessive gene. Molecular mapping of the wsll was performed using an F2 population derived from wsll/Nanjing 11. The wsll was finally mapped on the telomere region of chromosome 9 and positioned between simple sequence repeat markers RM23742 and RM23759 which are separated by approximately 486.5 kb. The results may facilitate map-based cloning of wsll and understanding of the molecular mechanism of the regulation of leaf-color by WSL1 in rice.
基金supported by the National Natural Science Foundation of China (Grant No. 30470274)the Zhejiang Natural Science Foundation of China (Grant No. Y306087)the Zijin Program of Zhejiang University for Young Teachers, China.
文摘The anatomical and chemical characteristics of a rolling leaf mutant (rlm) of rice (Oryza sativa L.) and its ecophysiological properties in photosynthesis and apoplastic transport were investigated. Compared with the wild type (WT), the areas of whole vascular bundles and xylem as well as the ratios of xylem area/whole vascular bundles area and xylem area/phloem area were higher in rim, whereas the area and the width of foliar bulliform cell were lower. The Fourier transform infrared (FTIR) microspectroscopy spectra of foliar cell walls differed greatly between rim and WT. The rim exhibited lower protein and polysaccharide contents of foliar cell walls. An obvious reduction of pectin content was also found in rim by biochemical measurements. Moreover, the rate of photosynthesis was depressed while the conductance of stoma and the intercellular CO2 concentration were enhanced in rim. The PTS fluorescence, which represents the ability of apoplastic transport, was 11% higher in rim than in WT. These results suggest that the changes in anatomical and chemical characteristics of foliar vascular bundles, such as the reduction of proteins, pectins, and other polysaccharides of foliar cell walls, participate in the leaf rolling mutation, and consequently lead to the reduced photosynthetic dynamics and apoplastic transport ability in the mutant.
基金supported by the Natural ScienceFoundation of Jiangsu Province of China (Grant No.SBK2010294)an Open Project Program of Jiangsu Key Laboratory of the Ministry of Education for Plant Functional Genomics (Grant No. K10001)
文摘Leaf-color mutations are a widely-observed class of mutations, playing an important role in the study of chlorophyll biosynthesis and plant chloroplast structure, function, genetics and development. A naturally-occurring leaf-color rice mutant, Baihuaidao 7, was analyzed. Mutant plants typically exhibited a green-white-green leaf-color progression, but this phenotype was only expressed in the presence of a stress signal induced by mechanical scarification such as transplantation. Prior to the appearance of white ~eaves, mutant plant growth, leaf color, chlorophyll content, and chloroplast ultrastructure appeared to be identical to those of the wild type. After the changeover to white leaf color, an examination of the mutated leaves revealed a decrease in total chlorophyll, chlorophyll a, chlorophyll b, and carotenoid content, a reduction in the number of chloroplast grana lamella and grana, and a gradual degradation of the thylakoid lamellas. At maturity, the mutant plant was etiolated and dwarfed compared with wild-type plants. Genetic analysis indicated that the leaf mutant character is controlled by a recessive nuclear gene. Genetic mapping of the mutant gene was performed using an F2 population derived from a Baihuaidao 7 ~ Jiangxi 1587 cross. The mutant gene was mapped to rice chromosome 11, positioned between InDel markers L59.2-7 and L64.8-11, which are separated by approximately 740.5 kb. The mutant gene is believed to be a new leaf-color mutant gene in rice, and is tentatively designated as gwgl.
基金supported by the National Natural Science Foundation of China(NSFC,31571646)the Science and Technology Project in Henan Province,China(182102110147)。
文摘Spotted leaf(spl)mutant is a type of leaf lesion mimic mutants in plants.We obtained some lesion mimic mutants from ethyl methane sulfonate(EMS)-mutagenized wheat(Triticum aestivum L.)cultivar Guomai 301(wild type,WT),and one of them was named as white stripe leaf(wsl)mutant because of the white stripes on its leaves.Here we report the heredity and gene mapping of this novel wheat mutant wsl.There are many small scattered white stripes on the leaves of wsl throughout its whole growth period.As the plants grew,the white stripes became more severe and the necrotic area expanded.The mutant wsl grew only weakly before the jointing stage and gradually recovered after jointing.The length and width of the flag leaf,spike number per plant and thousand-grain weight of wsl were significantly lower than those of the WT.Genetic analysis indicated that the trait of white stripe leaf was controlled by a recessive gene locus,named as wsl,which was mapped on the short arm of chromosome 6 B by SSR marker assay.Four SSR markers in the F2 population of wsl×CS were linked to wsl in the order of Xgpw1079–Xwmc104–Xgwm508-wsl–Xgpw7651 at 7.1,5.2,8.7,and 4.4 c M,respectively and three SSR markers in the F2 population of wsl×Jimai 22 were linked to wsl in the order of Xgwm508–Xwmc494–Xgwm518-wsl at 3.5,1.6 and 8.2 c M,respectively.In comparison to the reference genome sequence of Chinese Spring(CS),wsl is located in a 91-Mb region from 88 Mb(Xgwm518)to 179 Mb(Xgpw7651)on chromosome 6 BS.Mutant wsl is a novel germplasm for studying the molecular mechanism of wheat leaf development.
基金the Sate Key Laboratory of Rice Biology,China(ZZKT200801)the National High-Tech R&D Program of China(2011AA10A101 and 2012AA101102)
文摘A spotted-leaf mutant of rice HM143 was isolated from an EMS-induced IR64 mutant bank. Brown lesions randomly distributed on leaf blades were observed about 3 wk after sowing. The symptom lasted for the whole plant growth duration. Histochemical analysis indicated that cell death occurred in and around the site of necrotic lesions accompanied with accumulation of hydrogen hyperoxide. Agronomic traits were largely similar to the wild type IR64 except seed setting rate and 1 000-grain weight which were significantly decreased in the mutant. Disease resistance of the mutant to multiple races of Xanthomonas oryzae pv. oryzae was significantly enhanced. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively termed splHM143. In addition, using molecular markers and 1023 mutant type individuals from an F2 segregating population derived from the cross HM143/R9308, the spotted-leaf gene was finally delimited to an interval of 149 kb between markers XX25 and ID40 on the long arm of chromosome 4. splHM143 is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region.
基金supported by the National Natural Science Foundation of China(Grant No.30971552)Shanghai Municipal Education Commission of China(Grant No.09YZ167)+1 种基金Shanghai Municipal Science and Technology Commission of China(Grant Nos.08PJ14085,9391912300 and 09DJ1400505)the Leading Academic Discipline Project of Shanghai Municipal Education Commission,China(Grant No.J50401)
文摘A thermo-sensitive white stripe-leaf mutant (tws) was selected from the M2 progeny of a japonica variety, Jiahua 1, treated by ^60 Co γ-radiation. In comparison with the wild type parent, the mutant displayed a phenotype of white stripe on the 3rd and 4th leaves, but began to turn normal green on the 5th leaf when grown at low temperatures (20℃ and 24℃). Furthermore, the content of total chlorophyll showed an obvious decrease in the leaves with white stripe. These results suggest that the expression of the mutant trait was thermo-sensitive and correlated with the leaf age of seedlings. The genetic analysis indicated that the mutant trait was controlled by a single recessive nuclear gene, designated as tws. In addition, by using SSR markers and an F2 segregating population derived from the cross between the tws mutant and 9311, tws was mapped between the markers MM3907 and MM3928 with a physical distance of 86 kb on dce chromosome 4.
文摘The interaction between rice host and its pathogen Xanthomonas oryzae pv. oryzae (Xoo) at cellular level was studied by using a resistant somaclonal mutant HX-3 and its susceptable donor Minghui 63. After inoculation with Xoo strain Zhe 173 (Chinese pathotype Ⅳ), the activity of superoxide dismutase (SOD) and peroxidase (POD) in the callus of Minghui 63 was increased dramatically, and the active oxygen(O2 ) was produced at a higher rate; Meanwhile, the callus grew slowly with the reduction of protein content Compared to the activity of SOD and POD, the production rate of Oa and the fresh weight in HX-3 callus varied little after the inoculation It could be proposed that there were great differences between the resistance of HX-3 and Mighui 63 at cellular level. There was no difference detected concerning resistance to bacterial leaf blight in HX-3 between the plant and the callus.
基金supported by the National Key Research and Development Plan[2017YFD0100706]National Natural Science Foundation of China[31871618].
文摘Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this study,we investigated the protein expression profile of wheat Jimai5265yg mutant,which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency.Though TMT-labeling quantitative proteomics analysis,a total of 72 differential expressed proteins(DEPs)were obtained between the mutant and wild type(WT).GO analysis found that they significantly enriched in thylakoid membrane,pigment binding,magnesium chelatase activity and response to light intensity.KEGG analysis showed that they involved in photosynthesis-antenna protein as well as porphyrin and chlorophyll metabolism.Finally,118 RNA editing events were found between mutant and WT genotype.The A to C editing in the 3-UTR of TraesCS6D02G401500 lead to its high expression in mutant through removing the inhibition of tae-miR9781,which might have vital role in regulating the yellow-green mutant.This study provided some useful clues about the molecular basis of Jimai5265yg mutant as well as chlorophylls metabolism in wheat.
基金supported by the National Major Special Program of Breeding of Transgenetic Organisms New Variety(Grant Nos.2009ZX08001-022B,2009ZX08009-125B)National Natural ScienceFoundation of China(Grant No.30970171)
文摘A rumpled and twisted leaf 1(rtl1) mutant was generated from a japonica cultivar Nipponbare by ethyl methanesulfonate treatment,which was characterized as rumpled and twisted leaf at the seedling stage.The F2 populations were constructed by crossing with indica cultivars TN1 and Zhefu 802,respectively.Genetic analysis demonstrated that the phenotype was controlled by a single recessive nuclear gene.The closely linked simple sequence repeat(SSR) marker RM1155 was obtained from bulked segregant analysis.Subsequently,sequence tagged site(STS) markers were developed using the published rice genome sequence.Finally,RTL1 was located between an STS marker T1591 and an SSR marker RM1359,at the distances of 0.48 cM and 0.96 cM,respectively.These results will facilitate the cloning of the target gene in further studies.
文摘Eight lines of temperature-responsive leaf colormutants induced by applying 300 Gy Gamma-ray irradiation to Thermo-sensitive genic malesterile line 2177s,were obtained through con-tinuous selection in seven generations..Theleaves of these lines started to become greenafter the fourth leaf extension,and except