Symbiotic relations are present in the nature and can contribute to the success of the organisms involved. Endophytic fungi live within the leaf tissues without causing any harm to the host plant, and some of them can...Symbiotic relations are present in the nature and can contribute to the success of the organisms involved. Endophytic fungi live within the leaf tissues without causing any harm to the host plant, and some of them can be a defense mechanism against the attack by the leaf-cutting ants. Ants of the genus <em>Atta</em> are known as leaf-cutting ants and have an obligatory association with the fungus <em>Leucoagaricus gongylophorus</em>, cutting pieces of leaves and bringing them back to the colony to the fungus. The present study aimed to find out the endophytic fungi community of an attractive plant (<em>Acalypha wilkesiana</em>) and a less attractive plant (<em>Colocasia esculenta</em>) to the ants <em>Atta sexdens</em>. We found out that the communities are different in quantity and in composition and 73% of the isolated fungi were from <em>A. wilkesiana</em>, which has fungi known as attractive to leaf-cutting ants, such as genus<em> Colletotrichum</em>, <em>Pestalotiopsis</em>, <em>Phomopsis </em>and <em>Xylaria</em>. On the other hand, in <em>C. esculenta</em>, there was found the genus<em> Fusarium</em>, known to be reject by the leaf-cutting ants, and less fungal diversity than in the attractive plant <em>A. wilkesiana</em>. Therefore, our data suggest that attractivity or repelence of a plant to the leaf-cutting ants could be related to presence or ausence of determinated fungi more than the quantity of fungi present in a leaf.展开更多
The fungus-growing ants (Tribe Attini) are a New World group of〉 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex ...The fungus-growing ants (Tribe Attini) are a New World group of〉 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex ( Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers.展开更多
The present research investigated a segment of the micro-arthropod populations residing within nests of Messor arenarius ants in the Negev Desert of Israel. The total frequencies of micro-arthropods in the chaff of th...The present research investigated a segment of the micro-arthropod populations residing within nests of Messor arenarius ants in the Negev Desert of Israel. The total frequencies of micro-arthropods in the chaff of those ants’ nests were found to be higher than in the surrounding soil of the same nests. Acari (mites) were observed to be more abundant during the spring season, whereas their presence decreased during the summer months. Springtails (Collembola) were found to follow the Acari pattern, commonly found within the nests of those ants during spring but were absent during summer. Psocoptera order inhabiting soil habitats were infrequently encountered during spring, but their prevalence increased significantly during summer, particularly within the chaff of the ants’ nests, suggesting that chaff is their primary food source in the Negev Desert. Our research suggests that shifts in seasonality have important consequences on the distribution of soil invertebrate communities with implications on nutrient cycling.展开更多
Ants in the tribe Attini(Hymenoptera,Formicidae)maintain a 50 million-year-old lifestyle of co-evolution with symbiotic basidiomycetous fungi which they cultivate as essential source of nutrition.However,other microor...Ants in the tribe Attini(Hymenoptera,Formicidae)maintain a 50 million-year-old lifestyle of co-evolution with symbiotic basidiomycetous fungi which they cultivate as essential source of nutrition.However,other microorganisms have been reported from ant habitats indicating a higher diversity of consistently associated species than established to date.Recently,black yeast-like fungi have been reported as a possible symbiont,like a competitor of the actinomycete bacteria that grow in the integument of the insects.During the mating season,gynes of Atta capiguara and A.laevigata were collected from nests located in Botucatu,SP,Brazil and sampled using flotation technique.Phylogenetic analysis based on ITS,partial 28S(LSU)andβ-tubulin sequences revealed the occurrence of two novel species of Phialophora among the melanized fungi isolated.展开更多
Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the ...Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm.The isoform ANT1 predominately expresses in cardiac and skeletal muscles.Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases.We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-de-cient mice.Hearts and quadriceps resected from age-matched wild type(WT)and ANT1-de-cient mice were snap-frozen in liquid nitrogen.The Chance redox scanner was utilized to perform 3D optical redox imaging.Each sample underwent scanning across 3–5 sections.Global averaging analysis showed no signi-cant differences in the redox indices(NADH,flavin adenine dinucleotide containing-flavoproteins Fp,and the redox ratio Fp/(NADH+Fp)between WT and ANT1-de-cient groups.However,quadriceps had higher Fp than hearts in both groups(p¼0:0004 and 0.01,respectively).Furthermore,the quadriceps were also more oxidized(a higher redox ratio)than hearts in WT group(p¼0:004).NADH levels were similar in all cases.Our data suggest that under non-stressful physical condition,the ANT1-de-cient muscle cells were in the same mitochondrial state as WT ones and that the signi-cant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-de-cient ones.Redox imaging of muscles under physical stress can be conducted in future.展开更多
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ...This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.展开更多
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi...The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.展开更多
Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation pe...Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.展开更多
Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion...Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.展开更多
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le...With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.展开更多
The biology of a koinobiont parasitoid of leaf-cutting ant larvae, <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Szelenyiopria talitae<span ...The biology of a koinobiont parasitoid of leaf-cutting ant larvae, <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Szelenyiopria talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> (Hymenoptera: Diapriidae), was studied from naturally infested <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Acromyrmex subterraneus<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> (Hymenoptera: Formicidae) nests. Nests were collected in the field from the Atlantic rainforest biome in the state of Rio de Janeiro. A total of fifty-three nests were collected from 2015 to 2018. Parasitized nests were only found during the months of September and October. Approximately 22% of the nests collected over a four-year period were found to have been parasitized by <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i>. The mean within-nest parasitism rate was<span "=""> 66.3%. This diapriid displayed both solitary (14%) and gregarious parasitism (86%), with up to a maximum of 12 parasitoids developing within a single host. Gregarious parasitism with two (29%) or three (21%) <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i></span><i></i> per host was most frequently observed. There was a positive correlation between the number of parasitoids per host and host size (dry weight), indicating that <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> females oviposited a higher number of eggs in larger hosts. There was also a negative correlation between <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S.</i> <i>talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> pharate adult size and the number of parasitoids per host, which could have been caused by sibling competition for limited host resources. The high levels of parasitism seen here had a debilitating effect on the colonies. <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Acromyrmex subterraneus<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> is a serious pest in Brazil, and these studies lay the foundation for understanding the impact of <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> on ant populations.展开更多
Ants of artificial colony are able to generate good solutions to the famous traveling salesman problem (TSP). We propose an artificial ants algorithm for solving the minimum ratio TSP, which is more general than the s...Ants of artificial colony are able to generate good solutions to the famous traveling salesman problem (TSP). We propose an artificial ants algorithm for solving the minimum ratio TSP, which is more general than the standard TSP in combinatorial optimization area. In the minimum ratio TSP, another criterion concerning each edge is added, that is, the traveling salesman can have a benefit if he travels from one city to another. The objective is to minimize the ratio between total costs or distances and total benefits. The idea of this type of optimization is in some sense quite similar to that of traditional cost-benefit analysis in management science. Computational results substantiate the solution quality and efficiency of the algorithm.展开更多
文摘Symbiotic relations are present in the nature and can contribute to the success of the organisms involved. Endophytic fungi live within the leaf tissues without causing any harm to the host plant, and some of them can be a defense mechanism against the attack by the leaf-cutting ants. Ants of the genus <em>Atta</em> are known as leaf-cutting ants and have an obligatory association with the fungus <em>Leucoagaricus gongylophorus</em>, cutting pieces of leaves and bringing them back to the colony to the fungus. The present study aimed to find out the endophytic fungi community of an attractive plant (<em>Acalypha wilkesiana</em>) and a less attractive plant (<em>Colocasia esculenta</em>) to the ants <em>Atta sexdens</em>. We found out that the communities are different in quantity and in composition and 73% of the isolated fungi were from <em>A. wilkesiana</em>, which has fungi known as attractive to leaf-cutting ants, such as genus<em> Colletotrichum</em>, <em>Pestalotiopsis</em>, <em>Phomopsis </em>and <em>Xylaria</em>. On the other hand, in <em>C. esculenta</em>, there was found the genus<em> Fusarium</em>, known to be reject by the leaf-cutting ants, and less fungal diversity than in the attractive plant <em>A. wilkesiana</em>. Therefore, our data suggest that attractivity or repelence of a plant to the leaf-cutting ants could be related to presence or ausence of determinated fungi more than the quantity of fungi present in a leaf.
文摘The fungus-growing ants (Tribe Attini) are a New World group of〉 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex ( Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers.
文摘The present research investigated a segment of the micro-arthropod populations residing within nests of Messor arenarius ants in the Negev Desert of Israel. The total frequencies of micro-arthropods in the chaff of those ants’ nests were found to be higher than in the surrounding soil of the same nests. Acari (mites) were observed to be more abundant during the spring season, whereas their presence decreased during the summer months. Springtails (Collembola) were found to follow the Acari pattern, commonly found within the nests of those ants during spring but were absent during summer. Psocoptera order inhabiting soil habitats were infrequently encountered during spring, but their prevalence increased significantly during summer, particularly within the chaff of the ants’ nests, suggesting that chaff is their primary food source in the Negev Desert. Our research suggests that shifts in seasonality have important consequences on the distribution of soil invertebrate communities with implications on nutrient cycling.
基金The authors would like to thank D.Smith and G.Omer for technical support with DNA purification,PCR and sequencing.Laboratory work at the CBS was financed by the Royal Dutch Academy of Arts and Science(KNAW)the Fonds voor Economische Stuctuurversterking(FES)with the grant‘Barcoding the CBS collections’.Laboratory work at UNESP was financed by CNPq(proc.305.457/2001-0 and 560.682/2010-7).
文摘Ants in the tribe Attini(Hymenoptera,Formicidae)maintain a 50 million-year-old lifestyle of co-evolution with symbiotic basidiomycetous fungi which they cultivate as essential source of nutrition.However,other microorganisms have been reported from ant habitats indicating a higher diversity of consistently associated species than established to date.Recently,black yeast-like fungi have been reported as a possible symbiont,like a competitor of the actinomycete bacteria that grow in the integument of the insects.During the mating season,gynes of Atta capiguara and A.laevigata were collected from nests located in Botucatu,SP,Brazil and sampled using flotation technique.Phylogenetic analysis based on ITS,partial 28S(LSU)andβ-tubulin sequences revealed the occurrence of two novel species of Phialophora among the melanized fungi isolated.
基金supported in part by NIH Grant CA191207 and CA277037(L.Z.Li)AG078814 and CA259635(D.Wallace)and DOD Grant W81XWH2210561(D.Wallace).
文摘Adenine nucleotide translocator(ANT)is a mitochondrial protein involved in the exchange of ADP and ATP across the mitochondrial inner membrane.It plays a crucial role in cellular energy metabolism by facilitating the transport of ATP synthesized within the mitochondria to the cytoplasm.The isoform ANT1 predominately expresses in cardiac and skeletal muscles.Mutations or dysregulation in ANT1 have been implicated in various mitochondrial disorders and neuromuscular diseases.We aimed to examine whether ANT1 deletion may affect mitochondrial redox state in our established ANT1-de-cient mice.Hearts and quadriceps resected from age-matched wild type(WT)and ANT1-de-cient mice were snap-frozen in liquid nitrogen.The Chance redox scanner was utilized to perform 3D optical redox imaging.Each sample underwent scanning across 3–5 sections.Global averaging analysis showed no signi-cant differences in the redox indices(NADH,flavin adenine dinucleotide containing-flavoproteins Fp,and the redox ratio Fp/(NADH+Fp)between WT and ANT1-de-cient groups.However,quadriceps had higher Fp than hearts in both groups(p¼0:0004 and 0.01,respectively).Furthermore,the quadriceps were also more oxidized(a higher redox ratio)than hearts in WT group(p¼0:004).NADH levels were similar in all cases.Our data suggest that under non-stressful physical condition,the ANT1-de-cient muscle cells were in the same mitochondrial state as WT ones and that the signi-cant difference in the mitochondrial redox state between quadriceps and hearts found in WT might be diminished in ANT1-de-cient ones.Redox imaging of muscles under physical stress can be conducted in future.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korea government(MSIT)(No.RS-2023-00218176)the Soonchunhyang University Research Fund.
文摘This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms.
基金supported by National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154,62202147)the key Research and Development Program of Hubei Province,China(Grant No.2023BEB024).
文摘The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
基金This research was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3305303in part by the National Natural Science Foundations of China(NSFC)under Grant 62106055+1 种基金in part by the Guangdong Natural Science Foundation under Grant 2022A1515011825in part by the Guangzhou Science and Technology Planning Project under Grants 2023A04J0388 and 2023A03J0662.
文摘Marine container terminal(MCT)plays a key role in the marine intelligent transportation system and international logistics system.However,the efficiency of resource scheduling significantly influences the operation performance of MCT.To solve the practical resource scheduling problem(RSP)in MCT efficiently,this paper has contributions to both the problem model and the algorithm design.Firstly,in the problem model,different from most of the existing studies that only consider scheduling part of the resources in MCT,we propose a unified mathematical model for formulating an integrated RSP.The new integrated RSP model allocates and schedules multiple MCT resources simultaneously by taking the total cost minimization as the objective.Secondly,in the algorithm design,a pre-selection-based ant colony system(PACS)approach is proposed based on graphic structure solution representation and a pre-selection strategy.On the one hand,as the RSP can be formulated as the shortest path problem on the directed complete graph,the graphic structure is proposed to represent the solution encoding to consider multiple constraints and multiple factors of the RSP,which effectively avoids the generation of infeasible solutions.On the other hand,the pre-selection strategy aims to reduce the computational burden of PACS and to fast obtain a higher-quality solution.To evaluate the performance of the proposed novel PACS in solving the new integrated RSP model,a set of test cases with different sizes is conducted.Experimental results and comparisons show the effectiveness and efficiency of the PACS algorithm,which can significantly outperform other state-of-the-art algorithms.
文摘Adaptability and dynamicity are special properties of social insects derived from the decentralized behavior of the insects. Authors have come up with designs for software solution that can regulate traffic congestion in a network transportation environment. The effectiveness of various researches on traffic management has been verified through appropriate metrics. Most of the traffic management systems are centered on using sensors, visual monitoring and neural networks to check for available parking space with the aim of informing drivers beforehand to prevent traffic congestion. There has been limited research on solving ongoing traffic congestion in congestion prone areas like car park with any of the common methods mentioned. This study focus however is on a motor park, as a highly congested area when it comes to traffic. The car park has two entrance gate and three exit gates which is divided into three Isle of parking lot where cars can park. An ant colony optimization algorithm (ACO) was developed as an effective management system for controlling navigation and vehicular traffic congestion problems when cars exit a motor park. The ACO based on the nature and movement of the natural ants, simulates the movement of cars out of the car park through their nearest choice exit. A car park simulation was also used for the mathematical computation of the pheromone. The system was implemented using SIMD because of its dual parallelization ability. The result showed about 95% increase on the number of vehicles that left the motor park in one second. A clear indication that pheromones are large determinants of the shortest route to take as cars followed the closest exit to them. Future researchers may consider monitoring a centralized tally system for cars coming into the park through a censored gate being.
文摘With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms.
文摘The biology of a koinobiont parasitoid of leaf-cutting ant larvae, <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Szelenyiopria talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> (Hymenoptera: Diapriidae), was studied from naturally infested <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Acromyrmex subterraneus<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> (Hymenoptera: Formicidae) nests. Nests were collected in the field from the Atlantic rainforest biome in the state of Rio de Janeiro. A total of fifty-three nests were collected from 2015 to 2018. Parasitized nests were only found during the months of September and October. Approximately 22% of the nests collected over a four-year period were found to have been parasitized by <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i>. The mean within-nest parasitism rate was<span "=""> 66.3%. This diapriid displayed both solitary (14%) and gregarious parasitism (86%), with up to a maximum of 12 parasitoids developing within a single host. Gregarious parasitism with two (29%) or three (21%) <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i></span><i></i> per host was most frequently observed. There was a positive correlation between the number of parasitoids per host and host size (dry weight), indicating that <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> females oviposited a higher number of eggs in larger hosts. There was also a negative correlation between <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S.</i> <i>talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> pharate adult size and the number of parasitoids per host, which could have been caused by sibling competition for limited host resources. The high levels of parasitism seen here had a debilitating effect on the colonies. <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>Acromyrmex subterraneus<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> is a serious pest in Brazil, and these studies lay the foundation for understanding the impact of <span style="color:#4D5156;background-color:#FFFFFF;"><i></i></span><i><i>S. talitae<span style="color:#4D5156;background-color:#FFFFFF;"></span></i></i> on ant populations.
基金This project was supported by the Shanghai Education Development Foundation (No.2000SG30).
文摘Ants of artificial colony are able to generate good solutions to the famous traveling salesman problem (TSP). We propose an artificial ants algorithm for solving the minimum ratio TSP, which is more general than the standard TSP in combinatorial optimization area. In the minimum ratio TSP, another criterion concerning each edge is added, that is, the traveling salesman can have a benefit if he travels from one city to another. The objective is to minimize the ratio between total costs or distances and total benefits. The idea of this type of optimization is in some sense quite similar to that of traditional cost-benefit analysis in management science. Computational results substantiate the solution quality and efficiency of the algorithm.