Leaf blight spot disease,caused by bacteria and fungi,poses a threat to plant health,leading to leaf discoloration and diminished agricultural yield.In response,we present a MobileNetV3 based classifier designed for t...Leaf blight spot disease,caused by bacteria and fungi,poses a threat to plant health,leading to leaf discoloration and diminished agricultural yield.In response,we present a MobileNetV3 based classifier designed for the Jasmine plant,leveraging lightweight Convolutional Neural Networks(CNNs)to accurately identify disease stages.The model integrates depth wise convolution layers and max pool layers for enhanced feature extraction,focusing on crucial low level features indicative of the disease.Through preprocessing techniques,including data augmentation with Conditional GAN and Particle Swarm Optimization for feature selection,the classifier achieves robust performance.Evaluation on curated datasets demonstrates an outstanding 97%training accuracy,highlighting its efficacy.Real world testing with diverse conditions,such as extreme camera angles and varied lighting,attests to the model's resilience,yielding test accuracies between 94%and 96%.The dataset's tailored design for CNN based classification ensures result reliability.Importantly,the model's lightweight classification,marked by fast computation time and reduced size,positions it as an efficient solution for real time applications.This comprehensive approach underscores the proposed classifier's significance in addressing leaf blight spot dis-ease challenges in commercial crops.展开更多
Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and s...Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues. Given favourable environmental conditions, this disease spread to areas surrounding Gansu. In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018and 2020 to identify the disease-causing pathogen. Based on morphological features, pathogenicity tests, and multilocus phylogenetic analysis involving internal transcribed spacer(ITS), 18S small subunit rDNA(SSU), 28S large subunit rDNA(LSU), translation elongation factor 1-alpha(TEF), and β-tubulin(TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight. Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis. The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight.展开更多
The purpose of this study was to characterize mulberry leaf instant tea(MLIT)powder prepared from the'Longsang No.1'(Morus abla L.cv.Longsang 1)mulberry leaves in Heilongjiang Province(China)and assess its obe...The purpose of this study was to characterize mulberry leaf instant tea(MLIT)powder prepared from the'Longsang No.1'(Morus abla L.cv.Longsang 1)mulberry leaves in Heilongjiang Province(China)and assess its obesity-preventing/relieving effects.A total of 174 compounds including quercetin,chlorogenic acid,1-deoxyecomycin(1-DNJ)related to antihyperlipidemia effects were identified from the MLIT powder.MLIT treatment reversed the Lee's index,fat coefficient,and serum biochemical parameters in both the obesity relieving and obesity preventing mice fed with high-fat diet.In the obesity relieving experiment,the relative abundance of Desulfovibrio in mouse feces decreased after both 0.5%and 1%MLIT treatments.In obesity preventing experiments,mouse with different amount of MLIT treatments showed increased relative abundance of Akkermansia,Bifidobacterium and Lactobacillus,while Deferribacteres,Desulfobacterota decreased.The beneficial bacteria in the intestinal tract of mice treated with MLIT increased.This study proved that MLIT had antihyperlipidemia potential via modulating intestinal microbiota in mice.展开更多
Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric ...Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.展开更多
Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types withi...Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.展开更多
Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sens...Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sensitivity to vapour pressure deficit(VPD)in mangroves,and its co-ordination with stomatal morphology and leaf hydraulic traits.We measured the stomatal response to a step increase in VPD in situ,stomatal anatomy,leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size.We aimed to answer two questions:(1)Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves?with a consideration of possible influence of genome size on stomatal morphology;and(2)do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves?We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits.Smaller,denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae,and stomata size negatively and vein density positively correlated with genome size.Less negative leaf osmotic pressure at the full turgor(πo)was related to higher operating steady-state stomatal conductance(gs);and a higher leaf capacitance(Cleaf)and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD.In addition,stomatal responsiveness to VPD was indirectly affected by leaf morphological traits,which were affected by site salinity and consequently leaf water status.Our results demonstrate that mangroves display a unique relationship between genome size,stomatal size and vein packing,and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology.Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.展开更多
Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhi...Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES.展开更多
Plant anatomy is patterned early during leaf development which suggests studying the spatial–temporal transcriptomes of primordia will help identify critical regulative and functional genes.We successfully isolated t...Plant anatomy is patterned early during leaf development which suggests studying the spatial–temporal transcriptomes of primordia will help identify critical regulative and functional genes.We successfully isolated the leaf primordia tissues from the C3grass rice and the C4grass foxtail millet by laser capture microdissection(LCM)and studied the gene expression throughout leaf developmental stages.Our data analysis uncovered the conserved expression patterns of certain gene clusters both in rice and foxtail millet during leaf development.We revealed genes and transcription factors involved in vein formation,stomatal development,and suberin accumulation.We identified 79 candidate genes associated with functional regulation of C4anatomy formation.Screening phenotype of the candidate genes revealed that knock-out of a putative polar auxin transport related gene NAL1 resulted significantly reduced veinal space in rice leaf.Our present work provides a foundation for future analyses of genes with novel functions in grasses and their role in leaf development,in particular the role in leaves with a contrasting C3vs.C4biosynthetic pathway.展开更多
Xanthomonas spp. cause severe bacterial diseases. However, effective strategies for prevention and management of these diseases are scarce. Thus, it is necessary to improve the efficiency of control of diseases caused...Xanthomonas spp. cause severe bacterial diseases. However, effective strategies for prevention and management of these diseases are scarce. Thus, it is necessary to improve the efficiency of control of diseases caused by Xanthomonas. In this study, Xanthomonas oryzae pv. oryzae(Xoo), which causes rice bacterial leaf blight, has been studied as a representative. A transposon insertion library of Xoo, comprising approximately 200,000 individual insertion mutants, was generated. Transposon sequencing data indicated that the mariner C9 transposase mapped at 35.7–36.4% of all potential insertion sites, revealing 491 essential genes required for the growth of Xoo in rich media. The results show that, compared to the functions of essential genes of other bacteria, the functions of some essential genes of Xoo are unknown, 25 genes might be dangerous for the Xanthomonas group, and 3 are specific to Xanthomonas. High-priority candidates for developing broad-spectrum, Xanthomonas-specific, and environment-friendly bactericides were identified in this study. In addition, this study revealed the possible targets of dioctyldiethylenetriamine using surface plasmon resonance(SPR) in combination with high performance liquid chromatography–mass spectrometry(HPLC–MS). The study also provided references for the research of some certain bactericides with unknown anti-bacterial mode of action. In conclusion, this study urged a better understanding of Xanthomonas,provided meaningful data for the management of bacterial leaf blight, and disclosed selected targets of a novel bactericide.展开更多
The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between...The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice.展开更多
A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unkn...A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation.展开更多
In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N ...In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.展开更多
The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,a...The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.展开更多
The enzyme C-14 sterol reductase is involved in biosynthesis of brassinosteroids(BR)and sterols,as well as plant development.OsFK1,a member of the sterol biosynthesis pathway located in the endoplasmic reticulum(ER),e...The enzyme C-14 sterol reductase is involved in biosynthesis of brassinosteroids(BR)and sterols,as well as plant development.OsFK1,a member of the sterol biosynthesis pathway located in the endoplasmic reticulum(ER),encodes C-14 sterol reductase.However,there is little research on the function of C-14 sterol reductase in rice.Compared with the wild type,an osfk1 mutant showed dwarf phenotype and premature aging in the second leaf during the trefoil stage,and abnormal development of leaf veins during the tillering stage.The osfk1 mutant showed signs of aberrant PCD,as evidenced by TUNEL staining.This suggested that high ROS buildup caused DNA damage and ROS-mediated cell death in the mutant.The osfk1 mutant also showed decreased chlorophyll content and aberrant chloroplast structure.Sequencing of the osfk1 mutant allele revealed a non-synonymous G to A mutation in the final intron,leading to early termination.Here,we identified the OsFK1 allele,cloned it by Mutmap sequencing,and verified it by complementation.HPLC-MS/MS assays demonstrated that the osfk1 mutation caused lower phytosterol levels.These findings showed that the OsFK1 allele encoding C-14 sterol reductase is involved in phytosterol biosynthesis and mediates normal development of rice plants.展开更多
Purple-leafed plants not only have a higher resistance to biotic and abiotic stresses,but also have higher ornamental value.Anthocyanins are vital for leaf color formation,growth and development of purple leaves.Howev...Purple-leafed plants not only have a higher resistance to biotic and abiotic stresses,but also have higher ornamental value.Anthocyanins are vital for leaf color formation,growth and development of purple leaves.However,the molecular mechanism underlying purple leaf formation in Lagerstroemia indica remains unclear.Metabolomic and transcriptomic analysis of purple-leafed cultivar‘Ebony Embers’and greenleafed cultivar‘Arapahoe’showed that the high expression of anthocyanin structure genes induced hyperaccumulation of cyanidin and pelargonidin derivatives,making the leaves purple.LfiHY5,LfiMYB75 and LfibHLH1 were identified using correlation analysis and weighted gene co-expression network analysis.In‘Arapahoe’‘Ebony Embers’population,LfiHY5 and LfiMYB75 showed significant positive correlation with leaf anthocyanin content.Transient expression of LfiMYB75 and LfiHY5 in tobacco and purple-leafed crape myrtle indicated that the two genes activated anthocyanin synthesis.Yeast two-hybrid analysis showed that LfiMYB75 and LfibHLH1 could form a complex that enhanced anthocyanin synthesis.Yeast monohybrid and dual-luciferase assays confirmed that LfiHY5 activated the expression of LfiMYB75,to activate the transcription of anthocyanin structural genes LfiCHS and LfiANS.Moreover,there were three alleles of LfiHY5 in crape myrtle,and the different sequences had different activation effects on LfiMYB75.In conclusion,the results showed that LfiHY5 led to upregulate the transcription of LfiMYB75,and LfiMYB75 formed a complex with LfibHLH1,which increased the transcription level of LfiCHS and LfiANS to affect anthocyanin synthesis in crape myrtle.展开更多
Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the act...Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.展开更多
Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this...Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value.展开更多
Soil salinity is a wo rldwide issue and a major threat to global food security.Salinity tolerance is a complex mechanism that is conferred by numerous molecular,physiological,and biochemical traits.Of critical importa...Soil salinity is a wo rldwide issue and a major threat to global food security.Salinity tolerance is a complex mechanism that is conferred by numerous molecular,physiological,and biochemical traits.Of critical importance are plant's ability to regulate redox balance without compromising reactive oxygen species(ROS)signalling and maintain cytosolic ion homeostasis.In this study,the mechanistic basis of H^(+) retention ability in leaf mesophyll(an important but highly sensitive plant tissue)was compared between halophytic quinoa and glycophytic spinach.Phenotypic data showed quinoa outperformed spinach under 100 to 500 mmol L^(-1) NaCl salinity.The major difference behind this differential salinity sensitivity was a differential H^(+) uptake in leaf mesophyll.Electrophysiological and molecular experiments revealed that a superior ability of mesophyll H^(+) retention in quinoa was conferred by three complementary mechanisms:(ⅰ)an intrinsically lower H^(+)-ATPase activity in quinoa(potentially as an energy saving strategy);(ⅱ)reduced sensitivity of H^(+) transporters to ROS;and(ⅲ)increased sensitivity of ROS-inducible Ca^(2+)-permeable channels,Moreover,the sensitivity of H^(+)-transport systems to ROS was further examined in NaCl-acclimated quinoa and spinach plants.The key factors differentiating between H^(+) retention in acclimated leaf mesophyll was associated with the reduced sensitivity and gene expression of H^(+)-permeable outward rectifying channel(GORK),Arabidopsis potassium transporter 1(AKT1),and high affinity potassium transporter 5(HAK5)to additional NaCl and ROS stress,along with the upregulation of ROS scavenging system.Taken together,our results showed that the tissue-specific and ROS-specific regulation of H^(+) retention are important for conferring salinity tolerant at least in the halophyte quinoa.展开更多
In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogr...In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogramming,especially of genes involved in chlorophyll and carbon metabolism,redox regulation,and transcriptional regulation,during dark-induced leaf senescence.Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes.Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin.A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions.展开更多
基金supported by any research grants from private or public funding agencies.Open-access publication funding will be provided by the Manipal Academy of Higher Education,Manipal.
文摘Leaf blight spot disease,caused by bacteria and fungi,poses a threat to plant health,leading to leaf discoloration and diminished agricultural yield.In response,we present a MobileNetV3 based classifier designed for the Jasmine plant,leveraging lightweight Convolutional Neural Networks(CNNs)to accurately identify disease stages.The model integrates depth wise convolution layers and max pool layers for enhanced feature extraction,focusing on crucial low level features indicative of the disease.Through preprocessing techniques,including data augmentation with Conditional GAN and Particle Swarm Optimization for feature selection,the classifier achieves robust performance.Evaluation on curated datasets demonstrates an outstanding 97%training accuracy,highlighting its efficacy.Real world testing with diverse conditions,such as extreme camera angles and varied lighting,attests to the model's resilience,yielding test accuracies between 94%and 96%.The dataset's tailored design for CNN based classification ensures result reliability.Importantly,the model's lightweight classification,marked by fast computation time and reduced size,positions it as an efficient solution for real time applications.This comprehensive approach underscores the proposed classifier's significance in addressing leaf blight spot dis-ease challenges in commercial crops.
基金supported by the Doctor Foundation of Gansu Academy of Agricultural Sciences,China(2020GAAS33)the Young Science and Technology Lifting Engineering Talents in Gansu Province,China(2020-18)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2017-ICS)。
文摘Maize(Zea mays L.) is an economically vital grain crop that is cultivated worldwide. In 2011, a maize foliar disease was detected in Lingtai and Lintao counties in Gansu Province, China. The characteristic signs and symptoms of this disease include irregular chlorotic lesions on the tips and edges of infected leaves and black punctate fruiting bodies in dead leaf tissues. Given favourable environmental conditions, this disease spread to areas surrounding Gansu. In this study, infected leaves were collected from Gansu and Ningxia Hui Autonomous Region between 2018and 2020 to identify the disease-causing pathogen. Based on morphological features, pathogenicity tests, and multilocus phylogenetic analysis involving internal transcribed spacer(ITS), 18S small subunit rDNA(SSU), 28S large subunit rDNA(LSU), translation elongation factor 1-alpha(TEF), and β-tubulin(TUB) sequences, Eutiarosporella dactylidis was identified as the causative pathogen of this newly discovered leaf blight. Furthermore, an in vitro bioassay was conducted on representative strains using six fungicides, and both fludioxonil and carbendazim were found to significantly inhibit the mycelial growth of E. dactylidis. The results of this study provide a reference for the detection and management of Eutiarosporella leaf blight.
基金supported by the Natural Science Foundation of Heilongjiang Province (LH2021C075)Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University),Ministry of Education。
文摘The purpose of this study was to characterize mulberry leaf instant tea(MLIT)powder prepared from the'Longsang No.1'(Morus abla L.cv.Longsang 1)mulberry leaves in Heilongjiang Province(China)and assess its obesity-preventing/relieving effects.A total of 174 compounds including quercetin,chlorogenic acid,1-deoxyecomycin(1-DNJ)related to antihyperlipidemia effects were identified from the MLIT powder.MLIT treatment reversed the Lee's index,fat coefficient,and serum biochemical parameters in both the obesity relieving and obesity preventing mice fed with high-fat diet.In the obesity relieving experiment,the relative abundance of Desulfovibrio in mouse feces decreased after both 0.5%and 1%MLIT treatments.In obesity preventing experiments,mouse with different amount of MLIT treatments showed increased relative abundance of Akkermansia,Bifidobacterium and Lactobacillus,while Deferribacteres,Desulfobacterota decreased.The beneficial bacteria in the intestinal tract of mice treated with MLIT increased.This study proved that MLIT had antihyperlipidemia potential via modulating intestinal microbiota in mice.
基金This research was supported by the National Natural Science Foundation of China(42161058).
文摘Vapor pressure deficit(VPD)plays a crucial role in determining plant physiological functions and exerts a substantial influence on vegetation,second only to carbon dioxide(CO_(2)).As a robust indicator of atmospheric water demand,VPD has implications for global water resources,and its significance extends to the structure and functioning of ecosystems.However,the influence of VPD on vegetation growth under climate change remains unclear in China.This study employed empirical equations to estimate the VPD in China from 2000 to 2020 based on meteorological reanalysis data of the Climatic Research Unit(CRU)Time-Series version 4.06(TS4.06)and European Centre for Medium-Range Weather Forecasts(ECMWF)Reanalysis 5(ERA-5).Vegetation growth status was characterized using three vegetation indices,namely gross primary productivity(GPP),leaf area index(LAI),and near-infrared reflectance of vegetation(NIRv).The spatiotemporal dynamics of VPD and vegetation indices were analyzed using the Theil-Sen median trend analysis and Mann-Kendall test.Furthermore,the influence of VPD on vegetation growth and its relative contribution were assessed using a multiple linear regression model.The results indicated an overall negative correlation between VPD and vegetation indices.Three VPD intervals for the correlations between VPD and vegetation indices were identified:a significant positive correlation at VPD below 4.820 hPa,a significant negative correlation at VPD within 4.820–9.000 hPa,and a notable weakening of negative correlation at VPD above 9.000 hPa.VPD exhibited a pronounced negative impact on vegetation growth,surpassing those of temperature,precipitation,and solar radiation in absolute magnitude.CO_(2) contributed most positively to vegetation growth,with VPD offsetting approximately 30.00%of the positive effect of CO_(2).As the rise of VPD decelerated,its relative contribution to vegetation growth diminished.Additionally,the intensification of spatial variations in temperature and precipitation accentuated the spatial heterogeneity in the impact of VPD on vegetation growth in China.This research provides a theoretical foundation for addressing climate change in China,especially regarding the challenges posed by increasing VPD.
基金This work was supported by the National Natural Science Foundation of China(32171765).
文摘Forest productivity is closely linked to seasonal variations and vertical differentiation in leaf traits.However,leaf structural and chemical traits variation among co-existing species,and plant functional types within the canopy are poorly quantified.In this study,the seasonality of leaf chlorophyll,nitrogen(N),and phosphorus(P)were quantified vertically along the canopy of four major tree species and two types of herbs in a temperate deciduous forest.The role of shade tolerance in shaping the seasonal variation and vertical differentiation was examined.During the entire season,chlorophyll content showed a distinct asymmetric unimodal pattern for all species,with greater chlorophyll levels in autumn than in spring,and the timing of peak chlorophyll per leaf area gradually decreased as shade tolerance increased.Chlorophyll a:b ratios gradually decreased with increasing shade tolerance.Leaf N and P contents sharply declined during leaf expansion,remained steady in the mature stage and decreased again during leaf senescence.Over the seasons,the lower canopy layer had significantly higher chlorophyll per leaf mass but not chlorophyll per leaf area than the upper canopy layer regardless of degree of shade tolerance.However,N and P per leaf area of intermediate shade-tolerant and fully shade-tolerant tree species were significantly higher in the upper canopy than in the lower.Seasonal variations in N:P ratios suggest changes in N or P limitation.These findings indicate that shade tolerance is a key feature shaping inter-specific differences in leaf chlorophyll,N,and P contents as well as their seasonality in temperate deciduous forests,which have significant implications for modeling leaf photosynthesis and ecosystem production.
基金financially supported by a grant of the National Natural Science Foundation of China(31670406)the Bagui Fellow scholarship(C33600992001)of Guangxi Zhuang Autonomous Region to KFC.
文摘Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sensitivity to vapour pressure deficit(VPD)in mangroves,and its co-ordination with stomatal morphology and leaf hydraulic traits.We measured the stomatal response to a step increase in VPD in situ,stomatal anatomy,leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size.We aimed to answer two questions:(1)Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves?with a consideration of possible influence of genome size on stomatal morphology;and(2)do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves?We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits.Smaller,denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae,and stomata size negatively and vein density positively correlated with genome size.Less negative leaf osmotic pressure at the full turgor(πo)was related to higher operating steady-state stomatal conductance(gs);and a higher leaf capacitance(Cleaf)and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD.In addition,stomatal responsiveness to VPD was indirectly affected by leaf morphological traits,which were affected by site salinity and consequently leaf water status.Our results demonstrate that mangroves display a unique relationship between genome size,stomatal size and vein packing,and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology.Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability.
基金funded by the EU Regional Development Fund within the framework of the Centre of Excellence EcolChange(2014-2020.4.01.15-0002),the European Commission through the European Research Council(advanced grant 322603,SIPVOL+),the Estonian Research Council(personal grant PSG884)base funding nr 190200,the National Natural Science foundation of China(31711530648)+2 种基金the Personnel Startup Project of the Scientific Research and Development Foundation of Zhejiang A&F University(2021FR041)the study was partly purchased from funding by the EU Regional Development Fund(AnaEE Estonia,2014-2020.4.01.20-0285,and the project“Plant Biology Infrastructure-TAIM”,2014-2020.4.01.20-0282)the Estonian Research Council(“Plant Biology Infrastructure-TAIM”,TT5).
文摘Leaf economics spectrum(LES)describes the fundamental trade-offs between leaf structural,chemical,and physiological investments.Generally,structurally robust thick leaves with high leaf dry mass per unit area(LMA)exhibit lower photosynthetic capacity per dry mass(Amass).Paradoxically,“soft and thinleaved”mosses and spikemosses have very low Amass,but due to minute-size foliage elements,their LMA and its components,leaf thickness(LT)and density(LD),have not been systematically estimated.Here,we characterized LES and associated traits in cryptogams in unprecedented details,covering five evolutionarily different lineages.We found that mosses and spikemosses had the lowest LMA and LT values ever measured for terrestrial plants.Across a broad range of species from different lineages,Amass and LD were negatively correlated.In contrast,Amass was only related to LMA when LMA was greater than 14 g cm^(-2).In fact,low Amass reflected high LD and cell wall thickness in the studied cryptogams.We conclude that evolutionarily old plant lineages attained poorly differentiated,ultrathin mesophyll by increasing LD.Across plant lineages,LD,not LMA,is the trait that represents the trade-off between leaf robustness and physiology in the LES.
基金supported by the National Key Research and Development Program of China(NKRDP)(2022YFF1001700)the Agricultural Science and Technology Innovation Program(2020YFE0202300)the National Natural Science Foundation of China(31871313)。
文摘Plant anatomy is patterned early during leaf development which suggests studying the spatial–temporal transcriptomes of primordia will help identify critical regulative and functional genes.We successfully isolated the leaf primordia tissues from the C3grass rice and the C4grass foxtail millet by laser capture microdissection(LCM)and studied the gene expression throughout leaf developmental stages.Our data analysis uncovered the conserved expression patterns of certain gene clusters both in rice and foxtail millet during leaf development.We revealed genes and transcription factors involved in vein formation,stomatal development,and suberin accumulation.We identified 79 candidate genes associated with functional regulation of C4anatomy formation.Screening phenotype of the candidate genes revealed that knock-out of a putative polar auxin transport related gene NAL1 resulted significantly reduced veinal space in rice leaf.Our present work provides a foundation for future analyses of genes with novel functions in grasses and their role in leaf development,in particular the role in leaves with a contrasting C3vs.C4biosynthetic pathway.
基金This study was supported by the National Natural Science Foundation of China(32272587 and 32202342)the Programs for the Scientific Research Activities of Academic and Technical Leaders of Anhui Province,China(2020D251)+3 种基金the Development Fund for Talent Personnel of Anhui Agricultural University,China(rc342006)the University Synergy Innovation Program of Anhui Province,China(GXXT-2021-059)the Key Project of the Natural Science Foundation of Anhui Provincial Department of Education,China(2023AH040129)Anhui Province Agricultural Eco-Environmental Protection and Quality Safety Industry Technology System,China。
文摘Xanthomonas spp. cause severe bacterial diseases. However, effective strategies for prevention and management of these diseases are scarce. Thus, it is necessary to improve the efficiency of control of diseases caused by Xanthomonas. In this study, Xanthomonas oryzae pv. oryzae(Xoo), which causes rice bacterial leaf blight, has been studied as a representative. A transposon insertion library of Xoo, comprising approximately 200,000 individual insertion mutants, was generated. Transposon sequencing data indicated that the mariner C9 transposase mapped at 35.7–36.4% of all potential insertion sites, revealing 491 essential genes required for the growth of Xoo in rich media. The results show that, compared to the functions of essential genes of other bacteria, the functions of some essential genes of Xoo are unknown, 25 genes might be dangerous for the Xanthomonas group, and 3 are specific to Xanthomonas. High-priority candidates for developing broad-spectrum, Xanthomonas-specific, and environment-friendly bactericides were identified in this study. In addition, this study revealed the possible targets of dioctyldiethylenetriamine using surface plasmon resonance(SPR) in combination with high performance liquid chromatography–mass spectrometry(HPLC–MS). The study also provided references for the research of some certain bactericides with unknown anti-bacterial mode of action. In conclusion, this study urged a better understanding of Xanthomonas,provided meaningful data for the management of bacterial leaf blight, and disclosed selected targets of a novel bactericide.
基金supported by the Nanfan Special Project of Chinese Academy of Agricultural Sciences (Grant No. ZDXM2315)the National Natural Science Foundation of China (Grant Nos. 32372125, 31861143006, and 32188102)+2 种基金Special Support Program of Chinese Academy of Agricultural Sciences (Grant NO. NKYCLJ-C-2021-015)Specific Research Fund of the Innovation Platform for Academicians of Hainan Province2023 College Student Innovation and Entrepreneurship Project of Jiangxi Agricultural University, China (Grant No. S202310410095)
文摘The morphological development of rice(Oryza sativa L.)leaves is closely related to plant architecture,physiological activities,and resistance.However,it is unclear whether there is a co-regulatory relationship between the morphological development of leaves and adaptation to drought environment.In this study,a drought-sensitive,roll-enhanced,and narrow-leaf mutant(renl1)was induced from a semi-rolled leaf mutant(srl1)by ethyl methane sulfonate(EMS),which was obtained from Nipponbare(NPB)through EMS.Map-based cloning and functional validation showed that RENL1 encodes a cellulose synthase,allelic to NRL1/OsCLSD4.The RENL1 mutation resulted in reduced vascular bundles,vesicular cells,cellulose,and hemicellulose contents in cell walls,diminishing the water-holding capacity of leaves.In addition,the root system of the renl1 mutant was poorly developed and its ability to scavenge reactive oxygen species(ROS)was decreased,leading to an increase in ROS after drought stress.Meanwhile,genetic results showed that RENL1 and SRL1 synergistically regulated cell wall components.Our results revealed a theoretical basis for further elucidating the molecular regulation mechanism of cellulose on rice drought tolerance,and provided a new genetic resource for enhancing the synergistic regulation network of plant type and stress resistance,thereby realizing simultaneous improvement of multiple traits in rice.
基金This work was supported by the Postgraduate Research Innovation Project of Chongqing(CYS23217)Chongqing Modern Agricultural Industry Technology System(CQMAITS202301)+1 种基金the Science Fund for Creative Research Groups of the Natural Science Foundation of Chongqing,China(cstc2021jcyj-cxttX0004)Natural Science Foundation of Chongqing(2023NSCQ-BHX0281).
文摘A dynamic plant architecture is the basis of plant adaptation to changing environments.Although many genes regulating leaf rolling have been identified,genes directly associated with water homeostasis are largely unknown.Here,we isolated a rice mutant,dynamic leaf rolling 1(dlr1),characterized by‘leaf unfolding in the morning-leaf rolling at noon-leaf unfolding in the evening’during a sunny day.Water content was decreased in rolled leaves and water sprayed on leaves caused reopening,indicating that in vivo water deficiency induced the leaf rolling.Map-based cloning and expression tests demonstrated that an A1400G single base mutation in Oryza sativa Polygalacturonase 1(OsPG1)/PHOTO-SENSITIVE LEAF ROLLING 1(PSL1)was responsible for the dynamic leaf rolling phenotype in the dlr1 mutant.OsPG1 encodes a polygalacturonase,one of the main enzymes that degrade demethylesterified homogalacturonans in plant cell walls.OsPG1 was constitutively expressed in various tissues and was enriched in stomata.Mutants of the OsPG1 gene exhibited defects in stomatal closure and decreased stomatal density,leading to reduced transpiration and excessive water loss under specific conditions,but had normal root development.Further analysis revealed that mutation of OsPG1 led to reduced pectinase activity in the leaves and increased demethylesterified homogalacturonans in guard cells.Our findings reveal a mechanism by which OsPG1 modulates water homeostasis to control dynamic leaf rolling,providing insights for plants to adapt to environmental variation.
基金supported by the Biological Breeding-National Science and Technology Major Project (2023ZD04072)the Innovation Program of Chinese Academy of Agricultural Sciencesthe Hainan Yazhou Bay Seed Lab (B23YQ1507)。
文摘In grain crops such as maize(Zea mays),leaf angle(LA)is a key agronomic trait affecting light interception and thus planting density and yield.Nitrogen(N)affects LA in plants,but we lack a good understanding of how N regulates LA.Here,we report that N deficiency enhanced lignin deposition in the ligular region of maize seedlings.In situ hybridization showed that the bZIP transcription factor gene ZmbZIP27 is mainly expressed in the phloem of maize vascular bundles.Under N-sufficient conditions,transgenic maize overexpressing ZmbZIP27 showed significantly smaller LA compared with wild type(WT).By contrast,zmbzip27_(ems)mutant showed larger LA under both N-deficient and N-sufficient conditions compared with WT.Overexpression of ZmbZIP27 enhanced lignin deposition in the ligular region of maize in the field.We further demonstrated that ZmbZIP27 could directly bind the promoters of the microRNA genes ZmMIR528a and ZmMIR528b and negatively regulate the expression levels of ZmmiR528.ZmmiR528 knockdown transgenic maize displayed erect architecture in the field by increasing lignin content in the ligular region of maize.Taken together,these results indicate that ZmbZIP27 regulates N-mediated LA size by regulating the expression of ZmmiR528 and modulating lignin deposition in maize.
基金the National Natural Science Foundation of China(Grant No.32372652)the Liaoning Provincial Science and Technology Project of‘Jiebangguashuai’(Grant No.2022JH1/10400016)the Shenyang Academician and Expert Workstation Project(Grant No.2022-15).
文摘The strawberry species Fragaria nilgerrensis Schlechtendal ex J.Gay,renowned for its distinctive white,fragrant peach-like fruits and strong disease resistance,is an exceptional research material.In a previous study,an ethyl methane sulfonate(EMS)mutant library was established for this species,resulting in various yellow leaf mutants.Leaf yellowing materials are not only the ideal materials for basic studies on photosynthesis mechanism,chloroplast development,and molecular regulation of various pigments,but also have important utilization value in ornamental plants breeding.The present study focused on four distinct yellow leaf mutants:mottled yellow leaf(MO),yellow green leaf(YG),light green leaf(LG),and buddha light leaf(BU).The results revealed that the flavonoid content and carotenoid-to-chlorophyll ratio exhibited a significant increase among these mutants,while experiencing a significant decrease in chlorophyll and carotenoid contents compared to the wild type(WT).To clarify the regulatory mechanisms and network relationships underlying these mutants,the RNA-seq and weighted gene coexpression network(WGCNA)analyses were employed.The results showed flavonoid metabolism pathway was enriched both in MO and YG mutants,while the chlorophyll biosynthesis pathway and carotenoid degradation pathway were only enriched in MO and YG mutants,respectively.Subsequently,key structural genes and transcription factors were identified on metabolic pathways of three pigments through correlation analyses and quantitative experiments.Furthermore,a R2R3-MYB transcription factor,FnMYB4,was confirmed to be positively correlated with flavonoid synthesis through transient overexpression,virus-induced gene silencing(VIGS),and RNA interference(RNAi),accompanying by reoccurrence and attenuation of mutant phenotype.Finally,dual-luciferase(LUC)and yeast one-hybrid assays confirmed the binding of FnMYB4 to the FnFLS and FnF3H promoters,indicating that FnMYB4 positively regulates flavonoid synthesis.In addition,correlation analyses suggested that FnMYB4 also might be involved in chlorophyll and carotenoid metabolisms.These findings demonstrated the pivotal regulatory role of FnMYB4 in strawberry leaf coloration.
基金supported by the National Natural Science Foundation of China(32001491,32360493)Natural Science Foundation of Sichuan Province(2022NSFSC0153,2022NSFSC1754,2023NSFSC1170)the Key Research and Development Program of Sichuan Province(2021YFYZ0016).
文摘The enzyme C-14 sterol reductase is involved in biosynthesis of brassinosteroids(BR)and sterols,as well as plant development.OsFK1,a member of the sterol biosynthesis pathway located in the endoplasmic reticulum(ER),encodes C-14 sterol reductase.However,there is little research on the function of C-14 sterol reductase in rice.Compared with the wild type,an osfk1 mutant showed dwarf phenotype and premature aging in the second leaf during the trefoil stage,and abnormal development of leaf veins during the tillering stage.The osfk1 mutant showed signs of aberrant PCD,as evidenced by TUNEL staining.This suggested that high ROS buildup caused DNA damage and ROS-mediated cell death in the mutant.The osfk1 mutant also showed decreased chlorophyll content and aberrant chloroplast structure.Sequencing of the osfk1 mutant allele revealed a non-synonymous G to A mutation in the final intron,leading to early termination.Here,we identified the OsFK1 allele,cloned it by Mutmap sequencing,and verified it by complementation.HPLC-MS/MS assays demonstrated that the osfk1 mutation caused lower phytosterol levels.These findings showed that the OsFK1 allele encoding C-14 sterol reductase is involved in phytosterol biosynthesis and mediates normal development of rice plants.
基金the National Key R and D Program of China(Grant Nos.2019YFD1000402,2019YFD1001004)the World-Class Discipline Construction and Characteristic Development Guidance Funds for Beijing Forestry University(Grant No.2019XKJS0323).
文摘Purple-leafed plants not only have a higher resistance to biotic and abiotic stresses,but also have higher ornamental value.Anthocyanins are vital for leaf color formation,growth and development of purple leaves.However,the molecular mechanism underlying purple leaf formation in Lagerstroemia indica remains unclear.Metabolomic and transcriptomic analysis of purple-leafed cultivar‘Ebony Embers’and greenleafed cultivar‘Arapahoe’showed that the high expression of anthocyanin structure genes induced hyperaccumulation of cyanidin and pelargonidin derivatives,making the leaves purple.LfiHY5,LfiMYB75 and LfibHLH1 were identified using correlation analysis and weighted gene co-expression network analysis.In‘Arapahoe’‘Ebony Embers’population,LfiHY5 and LfiMYB75 showed significant positive correlation with leaf anthocyanin content.Transient expression of LfiMYB75 and LfiHY5 in tobacco and purple-leafed crape myrtle indicated that the two genes activated anthocyanin synthesis.Yeast two-hybrid analysis showed that LfiMYB75 and LfibHLH1 could form a complex that enhanced anthocyanin synthesis.Yeast monohybrid and dual-luciferase assays confirmed that LfiHY5 activated the expression of LfiMYB75,to activate the transcription of anthocyanin structural genes LfiCHS and LfiANS.Moreover,there were three alleles of LfiHY5 in crape myrtle,and the different sequences had different activation effects on LfiMYB75.In conclusion,the results showed that LfiHY5 led to upregulate the transcription of LfiMYB75,and LfiMYB75 formed a complex with LfibHLH1,which increased the transcription level of LfiCHS and LfiANS to affect anthocyanin synthesis in crape myrtle.
基金financially supported by the National Key Research and Development Program of China(2022YFD190160304)Natural Science Foundation of Sichuan Province(2022NSFSC0013)+1 种基金Sichuan Maize Innovation Team Construction Project(SCCXTD-2022-02)National Key Research and Development Program of China(2018YFD0301206)。
文摘Regulating planting density and nitrogen(N)fertilization could delay chlorophyll(Chl)degradation and leaf senescence in maize cultivars.This study measured changes in ear leaf green area(GLA_(ear)),Chl content,the activities of Chl a-degrading enzymes after silking,and the post-silking dry matter accumulation and grain yield under multiple planting densities and N fertilization rates.The dynamic change of GLA_(ear)after silking fitted to the logistic model,and the GLA_(ear) duration and the GLAearat 42 d after silking were affected mainly by the duration of the initial senescence period(T_(1))which was a key factor of the leaf senescence.The average chlorophyllase(CLH)activity was 8.3 times higher than pheophytinase activity and contributed most to the Chl content,indicating that CLH is a key enzyme for degrading Chl a in maize.Increasing density increased the CLH activity and decreased the Chl content,T1,GLAear,and GLA_(ear) duration.Under high density,appropriate N application reduced CLH activity,increased Chl content,prolonged T1,alleviated high-density-induced leaf senescence,and increased post-silking dry matter accumulation and grain yield.
基金This work was supported by grants from the construction and operation of the Food Nutrition and Health Research Center of Guangdong Academy of Agricultural Sciences,China(XTXM 202205)the earmarked fund for CARS-10Sweetpotato,and the Guangdong Modern Agro-industry Technology Research System,China(2022KJ111).
文摘Sweet potato leaf tips have high nutritional value,and exploring the differences in the metabolic profiles of leaf tips among different sweet potato varieties can provide information to improve their qualities.In this study,a UPLC-Q-Exactive Orbitrap/MS-based untargeted metabolomics method was used to evaluate the metabolites in leaf tips of 32 sweet potato varieties.Three varieties with distinct overall metabolic profiles(A01,A02,and A03),two varieties with distinct profiles of phenolic acids(A20 and A18),and three varieties with distinct profiles of flavonoids(A05,A12,and A16)were identified.In addition,a total of 163 and 29 differentially expressed metabolites correlated with the color and leaf shape of sweet potato leaf tips,respectively,were identified through morphological characterization.Group comparison analysis of the phenotypic traits and a metabolite-phenotypic trait correlation analysis indicated that the color differences of sweet potato leaf tips were markedly associated with flavonoids.Also,the level of polyphenols was correlated with the leaf shape of sweet potato leaf tips,with lobed leaf types having higher levels of polyphenols than the entire leaf types.The findings on the metabolic profiles and differentially expressed metabolites associated with the morphology of sweet potato leaf tips can provide useful information for breeding sweet potato varieties with higher nutritional value.
基金supported by the Grassland Ecological Restoration and Management Project of General Grassland Station of Xinjiang (XJCYZZ202102)。
文摘Soil salinity is a wo rldwide issue and a major threat to global food security.Salinity tolerance is a complex mechanism that is conferred by numerous molecular,physiological,and biochemical traits.Of critical importance are plant's ability to regulate redox balance without compromising reactive oxygen species(ROS)signalling and maintain cytosolic ion homeostasis.In this study,the mechanistic basis of H^(+) retention ability in leaf mesophyll(an important but highly sensitive plant tissue)was compared between halophytic quinoa and glycophytic spinach.Phenotypic data showed quinoa outperformed spinach under 100 to 500 mmol L^(-1) NaCl salinity.The major difference behind this differential salinity sensitivity was a differential H^(+) uptake in leaf mesophyll.Electrophysiological and molecular experiments revealed that a superior ability of mesophyll H^(+) retention in quinoa was conferred by three complementary mechanisms:(ⅰ)an intrinsically lower H^(+)-ATPase activity in quinoa(potentially as an energy saving strategy);(ⅱ)reduced sensitivity of H^(+) transporters to ROS;and(ⅲ)increased sensitivity of ROS-inducible Ca^(2+)-permeable channels,Moreover,the sensitivity of H^(+)-transport systems to ROS was further examined in NaCl-acclimated quinoa and spinach plants.The key factors differentiating between H^(+) retention in acclimated leaf mesophyll was associated with the reduced sensitivity and gene expression of H^(+)-permeable outward rectifying channel(GORK),Arabidopsis potassium transporter 1(AKT1),and high affinity potassium transporter 5(HAK5)to additional NaCl and ROS stress,along with the upregulation of ROS scavenging system.Taken together,our results showed that the tissue-specific and ROS-specific regulation of H^(+) retention are important for conferring salinity tolerant at least in the halophyte quinoa.
基金supported by the National Natural Science Foundation of China(32100448,32070558,32061143030,32170636)Natural Science Foundation of Jiangsu Province(BK20210799)+2 种基金Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)the Shanghai Science and Technology Agriculture Project([2022]No.1–6)the Project of Zhongshan Biological Breeding Laboratory(BM2022008-029)。
文摘In a study of DNA methylation changes in melatonin-deficient rice mutants,mutant plants showed premature leaf senescence during grain-filling and reduced grain yield.Melatonin deficiency led to transcriptional reprogramming,especially of genes involved in chlorophyll and carbon metabolism,redox regulation,and transcriptional regulation,during dark-induced leaf senescence.Hypomethylation of mCG and mCHG in the melatonin-deficient rice mutants was associated with the expression change of both protein-coding genes and transposable element-related genes.Changes in gene expression and DNA methylation in the melatonin-deficient mutants were compensated by exogenous application of melatonin.A decreased S-adenosyl-L-methionine level may have contributed to the DNA methylation variations in rice mutants of melatonin deficiency under dark conditions.