In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rot...In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors, including the radial rotor, the forward-skewed rotor and the back- ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the experiments, the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can display clearly some characteristics of the tip leakage vortex, such as the origination position of tip leak- age vortex, the development of vortex strength, and so on. Compared with the radial rotor, the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the forward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors, the velocity of the vortex in the forward-skewed rotor is th6 highest in the circumferential direction and the lowest in the axial direction.展开更多
A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vort...A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.展开更多
The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on...The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex(TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex,the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.展开更多
In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fa...In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fan rotor outlet us- ing an I-type hot-wire probe. The probe was set toward two directions, parallel and normal to the meridional plane of test fan, and the two directional velocity components were measured. From the result of fan test it was found that the test fan didn't have the unstable characteristic with a positive gradient on its pressure - flow-rate curve. From the results of velocity measurement it was observed that the tip leakage vortex exited at maximum efficiency flow-rate and large flow-rate conditions. However, at small flow-rate conditions the tip leakage vortex was not observed and it was found that the flow field were enlarged toward radial outwards展开更多
In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an al...In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.展开更多
Heightened interests have been laid at the preliminary design and optimization of the centrifugal compressor for the fuel cell vehicle.The centrifugal compressor for fuel cell vehicle is driven by a high-speed motor;h...Heightened interests have been laid at the preliminary design and optimization of the centrifugal compressor for the fuel cell vehicle.The centrifugal compressor for fuel cell vehicle is driven by a high-speed motor;however,the limit of the motor speed makes the flow passage of the impeller long and narrow,which leads to a serious tip leakage loss.Serious tip leakage loss deteriorates the compressor performance.In this paper,3-D numerical simulations were carried out with the aim of investigating the tip leakage loss in a prototype centrifugal compressor for a 100 kW fuel cell stack.The results revealed that the mixing loss caused by the interaction between the tip leakage vortex and the downstream tip leakage flow contributed to the major part of the tip leakage loss.The path of the tip leakage vortex almost followed the streamwise direction,while the downstream tip leakage flow exhibited strong circumferential momentum,which referred to the fact that they were nearly orthogonal.Therefore,a flow control approach,which was realized by enhancing the blade loading around the leading edge of blade tips in this paper,was proposed to decrease the interaction angle between the tip leakage vortex and the downstream tip leakage flow and then mitigate mixing loss by changing the flow direction of the tip leakage vortex.The results showed a smaller interaction angle was achieved in the optimized impeller compared with the baseline one.Meanwhile,the efficiency was also improved by 1.30%at design condition and the maximum efficiency improvement could be up to 10%at large mass flow condition of 92000 r/min.Being manufactured and tested,the optimized compressor was proved to achieve an isentropic efficiency of 75.84%at design condition.展开更多
Tip leakage vortex(TLV),which develops from the clearance between the turbine blade and casing,has been studied for decades.Nevertheless,some associated phenomena,such as its unsteady behaviors,are still not well unde...Tip leakage vortex(TLV),which develops from the clearance between the turbine blade and casing,has been studied for decades.Nevertheless,some associated phenomena,such as its unsteady behaviors,are still not well understood.In the present work,an unsteady simulation of a transonic turbine cascade was conducted by using a validated unsteady Reynolds averaged Navier-Stokes(URANS)technique with the k-ωshear stress transport(SST)turbulence model.Typical three-dimensional vortical topology in the tip region of this transonic turbine blade was depicted based on the vortex and shock wave identification.Afterwards,quantitative descriptions of TLV transient parameters,including core position,radius,intensity,wandering motion amplitude and their statistical analysis were also provided via an ellipse fitting method.Combined with the turbulent parameters in the tip region,it is recognized that the breakdown of TLV does not occur upstream of the trailing edge,and the TLV wandering,especially the spanwise motion is a dominant unsteady feature as migrating downstream.To mathematically extract underlying flow features of tip leakage flow(TLF),two data-driven modal analysis techniques,namely proper orthogonal decomposition(POD)and dynamic mode decomposition(DMD),are presented to complement one another to reveal underlying flow feature.Observation of modes distribution allowed qualitative identification of shockwaves,vortical cluster and corresponding transient interaction.Results of POD show that the dominant unsteady structures in the tip region exhibit various morphology with moving downstream.In the front part near the leading edge,the oscillation of separation bubble and bifurcation of passage vortex paly a dominant role;while in the middle part of the tip region,the corresponding factors are the wandering of TLV and unsteady interaction between shock waves and TLF/TLV.In the vicinity of the trailing edge,the instability induced by the mixing of large-scale vortices serves as the main factor in the context of flow unsteadiness.Both the POD and DMD methods can decompose the dominant frequency of TLV evolution and its harmonic frequencies;however,the DMD method presents a superiority in segregating the high-frequency components and their corresponding unsteady structures.展开更多
The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on th...The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on three different circumferential planes, respectively. The phase-locked average method is used to investigate the generation and the development of a tip leakage vortex. The result from PIV system is compared with that from a particle dynamics anemometer(PDA) system. Both data are in good agreement and the structure of the tip leakage vortex for the rotor is illustrated. The characteristic of a leakage vortex is described in both velocity vectors and vortical contours. The unsteadiness of the leakage vortex and the position of the vortex are surveyed in detail, which interprets the discrepancy between the numerical simulation and PDA experimental results to a certain extent. The center loci of tip leakage vortex at different times and the mean center loci of the leakage vortex are displayed particularly. Finally, the trajectories of the tip leakage vortex by the experimental measurement are compared with predictions from the existing models for high speed and high-pressure compressors and turbines when appropriately interpreted. A good agreement is obtained.展开更多
In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance ...In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ...展开更多
For most aircraft engines,inflow distortion is inevitable.Inflow distortion is known to degrade the aerodynamic performance and stable operating limits of a compressor.Tandem rotor configuration is an arrangement that...For most aircraft engines,inflow distortion is inevitable.Inflow distortion is known to degrade the aerodynamic performance and stable operating limits of a compressor.Tandem rotor configuration is an arrangement that effectively controls the growth of the boundary layer over the suction surface of the blade.Therefore,a higher total pressure rise can be achieved through this unconventional design approach involving the splitting of the blade into forward and aft sections.It is expected that the effect of inlet flow distortion would be more severe for a tandem-rotor design due to the greater flow turning inherent in such designs.However,this aspect needs to be thoroughly examined.The present study discusses the effect of circumferential distortion on the tandem-rotor at different rotational speeds.Full-annulus RANS simulations using ANSYS CFX are used in the present study.The performance of the rotor at a particular flow coefficient and different rotational speeds is compared.The total pressure and efficiency are observed to drop at lower mass flow rates under the influence of circumferential distortion.The loss region in each blade passage is mainly associated with the blade wake,tip leakage vortex,secondary flow,and boundary layer.However,their contribution varies from passage to passage,particularly in the distorted sector.At the lower span,the wake width is found to be higher than that at a higher span.Due to the redistribution of the mass flow,the circumferential extent reduces at a higher span.In the undistorted sector,the strength of the tip leakage vortex is significantly higher at the design rotational speed than at lower speeds.The distortion near the tip region promotes an early vortex breakdown even at the design operating condition.This adversely affects the total pressure,efficiency,and stall margin.Under clean flow conditions,this phenomenon is only observed near the stall point.At the design operating condition,the breakdown of the forward rotor tip leakage vortex is detected in four blade passages.The axial velocity deficit and adverse pressure gradient play a significant role in the behaviour of tip leakage vortex at lower rotational speeds in the distorted sector.A twin vortex breakdown is also observed at lower speeds.展开更多
To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation ...To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term.展开更多
In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the in- teraction with the main flow, and consequently makes the flow in the impeller passage more complex by...In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the in- teraction with the main flow, and consequently makes the flow in the impeller passage more complex by the inte- raction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance cs- pccia|ly for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.展开更多
This paper reports on numerical investigations aimed at understanding the influence of circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results and conclusions are based...This paper reports on numerical investigations aimed at understanding the influence of circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results and conclusions are based on steady state 3D numerical simulations of the well-known transonic axial compressor NASA Rotor 37 near stall operating conditions.The calculations carried out on the casing treatment configuration reveal an important modification of the vortex topology at the rotor tip clearance.Circumferential grooves limit the expansion of the tip leakage vortex in the direction perpendicular to the blade chord,but generate a set of secondary tip leakage vortices due to the interaction with the leakage mass flow.Finally,a deeper investigation of the tip leakage flow is proposed.展开更多
A model to predict the double leakage and tip leakage leading edge spillage flows was developed. This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-di...A model to predict the double leakage and tip leakage leading edge spillage flows was developed. This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-dimensional design parameters, i.e. the compressor massflow coefficient, Ф and compressor loading coeffi- cient, ψ, and some critical blade geometrical parameters, i.e. blade solidity, a, stagger angle, βs, blade chord length, C, and blade pitch length, S. By using this model, the double leakage and tip leakage leading edge spillage flow could be predicted even at the compressor preliminary design process. Considering the leading edge spillage flow usually indicates the inception of spike-type stall, i.e. the compressor is a tip critical design, this model could also be used as a tool to choose the critical design parameters for designers. At last, some experimental data from literature was used to validate the model and the results proved that the model was reliable.展开更多
Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-ada...Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-adaptive simulation (GAS) are employed to investigate the unsteady cavitating flow around a NACA0009 hydrofoil. The prediction accuracy of GAS, SAS, both using the shear-stress transport (SST) k — ω model as baseline turbulence model, is validated by comparing with experimental and LES results. The cavity behaviors and turbulence fields are analyzed systematically. Results show that the GAS gives a more reasonable turbulent viscosity and accurately predicts the periodic evolution of typical vortical structures of cavitating flow, such as tip leakage vortex cavitation, tip separation vortex cavitation, leading-edge cavitation, and trailing-edge vortex. The time-averaged cavity volume, volume fluctuation amplitude, and characteristic frequencies of cavities predicted by the GAS are very closed to the LES, while the SAS fails to accurately capture these cavity characteristics. Furthermore, the local trace criterion is applied to extract the vortical structures and to analyze the swirling patterns of the tip leakage vortex. Multi-scale vortical structures in LES are well identified by local trace criterion. The prediction accuracy of the SAS method for small-scale vortical structures, such as the vortex shedding on the suction side and the vortex rope around the tip leakage vortex, is obviously insufficient, while the GAS has a higher accuracy in predicting vortex shedding. The tip leakage vortex and induced vortex extracted from GAS are also closer to that of LES in both swirling patterns and scale.展开更多
The tip leakage flow between a blade and a casing wall has a strong impact on compressor pressure rise capability, efficiency, and stability. Consequently, there is a strong motivation to look for means to minimize it...The tip leakage flow between a blade and a casing wall has a strong impact on compressor pressure rise capability, efficiency, and stability. Consequently, there is a strong motivation to look for means to minimize its impact on performance. This paper presents the potential of passive tip leakage flow control to increase the aerodynamic performance of highly loaded compressor blades. Experimental investigations on a linear compressor cascade equipped with blade winglets mounted to the blade tips have been carried out. Results for a variation of the tip clearance and the winglet geometry are presented. Current results indicate that the use of proper tip winglets in a compressor cascade can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction-side winglets are aerodynamically superior to the pressure-side or combined winglets. The suction-side winglets are capable of reducing the exit total pressure loss associated with the tip leakage flow and the passage secondary flow to a significant degree.展开更多
The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establis...The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation(LES). Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry(SPIV). The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV,and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phasesaccording to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the splitting process is weak and the turbulent mixing phase is dominant.展开更多
In the present study,the research progress of tip winglets that control tip clearance leakage flow in compressors is reviewed.Firstly,the effects of tip leakage flow on the aerodynamic performance of the compressor ar...In the present study,the research progress of tip winglets that control tip clearance leakage flow in compressors is reviewed.Firstly,the effects of tip leakage flow on the aerodynamic performance of the compressor are presented.Subsequently,the development of tip winglet technology is reviewed.Next,a series of studies on compressor tip winglet technology are conducted.Besides,the effects of tip winglets on the aerodynamic performance of rectangular cascades of low-speed and high-subsonic compressors,subsonic compressor rotor and transonic compressor rotor are discussed,respectively,and the control effect of tip winglet technology combined with tip groove design on tip leakage is investigated.Lastly,the subsequent development direction and research prospect of compressor tip winglet technology are presented.展开更多
It is well known that the non-uniform tip geometry is a promising passive flow control technique in turbomachinery.However,detailed investigation of its effects on the unsteady flow field of turbomachinery is rare in ...It is well known that the non-uniform tip geometry is a promising passive flow control technique in turbomachinery.However,detailed investigation of its effects on the unsteady flow field of turbomachinery is rare in the existiug hteratures.This paper presents an experimental investigation of effects of suction side squealer tip configuration on both the steady and unsteady flow field of an isolated compressor rotor.The flow field at 10%chord downstream from the trailing edge was measured using a mini five-hole probe.Meanwhile,the unsteady flow field inside the passage was investigated using stereo particle image velocimetry(SPIV).The steady results show that the SSQ tip configuration exerts positive effect on the static pressure rise performance of this compressor,and the radial equilibrium at the rotor outlet is obviously rearranged.The SSQ tip configuration would create a stronger tip leakage vortex at the formation phase,and it experiences a faster dissipation process around the rear chord.Also,the splitting process of the tip leakage vortex is severer,which is the main cause of the relatively higher probability of the presence of the streamwise reverse flow.The quantitatively analysis of the tip leakage vortex indicates that the velocity loss inside the blockage region is direct response of the evolutionary procedure of the tip leakage vortex.It keeps increasing until the end of the splitting process.Although the blockage coefficient grows sustainably,the velocity loss will reduce once the turbulent mixing procedure is dominant.展开更多
As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the...As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head - flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carded out to understand the complicated internal flow structures in the rotors.展开更多
基金This project is supported by National Natural Science Foundation of China (No. 50406017).
文摘In the steady operation condition, the experiments and the numerical simulations are used to investigate the tip leakage flow fields in three low pressure axial flow fans with three kinds of circumferential skewed rotors, including the radial rotor, the forward-skewed rotor and the back- ward-skewed rotor. The three-dimensional viscous flow fields of the fans are computed. In the experiments, the two-dimensional plane particle image velocimetry (PIV) system is used to measure the flow fields in the tip region of three different pitchwise positions of each fan. The results show that the computational results agree well with the experimental data in the flow field of the tip region of each fan. The tip leakage vortex core segments based on method of the eigenmode analysis can display clearly some characteristics of the tip leakage vortex, such as the origination position of tip leak- age vortex, the development of vortex strength, and so on. Compared with the radial rotor, the other two skewed rotors can increase the stability of the tip leakage vortex and the increment in the forward-skewed rotor is more than that in the backward-skewed one. Among the tip leakage vortices of the three rotors, the velocity of the vortex in the forward-skewed rotor is th6 highest in the circumferential direction and the lowest in the axial direction.
基金the National Natural Science Foundation of China(Grant No.51479083)prospective Joint Research Proj ectofJiangsu Province(Grant No.BY2015064-08)+1 种基金Primary Research&Development Plan of Jiangsu Province(Grant Nos.BE2015001-3 and BE2015146)333Project of Jiangsu Province and Six Talent Peaks Project in Jiangsu Province(Grant No.HYGC-008)
文摘A series of blade tip geometries, including original plain tip, rounded tip on the pressure side and diverging tip towards the suction side, were adopted to investigate the effect of blade geometry on tip leakage vortex dynamics and cavitation pattern in an axial-flow pump. On the basis of the computation, it clearly shows the flow structure in the clearance for different tip configurations by the detailed data of axial velocity and turbulent kinetic energy. The in-plain trajectory, in aspects of the angle between the blade suction side and vortex core and the initial point of tip leakage vortex, was presented using the maximum swirling strength method. The most striking feature is that the inception location of tip leakage vortex is delayed for chamfered tip due to the change of blade loading on suction side. Some significant non-dimensional parameters, such as pressure, swirling strength and turbulent kinetic energy, were used to depict the characteristics of tip vortex core. By the distribution of circumferential vorticity which dominates the vortical flows near the tip region, it is observed that the endwall detachment as the leakage flow meets the mainstream varies considerably for tested cases. The present study also indicates that the shear layer feeds the turbulence into tip leakage vortex core, but the way is different. For the chamfered tip, high turbulence level in vortex core is mainly from the tip clearance where large turbulent kinetic energy emerges, while it is almost from a layer extending from the suction side corner for rounded tip. At last, the visualized observations show that tip clearance cavitation is eliminated dramatically for rounded tip but more intensive for chamfered tip, which can be associated with the vortex structure in the clearance.
基金funded by the National Natural Science Foundation of China,Grant No.51006007,51136003 and 50976009
文摘The near casing flow fields inside the rotor passage of a 1.5 stage axial compressor with different blade-loading levels and tip gap sizes were measured by using stereoscopic particle image velocimetry(SPIV). Based on a carefully defined blockage extracting method, the variations of blockage parameter inside the blade passage were analyzed. It was found that the variation of blockage parameter appeared as a non-monotonic behavior inside the blade passage in most cases. This non-monotonic behavior became much more remarkable as the blade loading increases or mass flow rate decreases.The variations of the blockage parameter inside the blade passage had close relation to the evolutionary procedures of the tip leakage vortex(TLV). The destabilization of the TLV caused a rapid increasing of the blockage parameter. After the TLV lost the features of a concentrated streamwise vortex,the blockage parameter usually got a peak value. And then, because of the intense turbulent mixing between the TLV low momentum flow and its surrounding flows, the flow deficit inside the TLV recovered.
文摘In order to improve the fan characteristics, especially efficiency and noise level of a small axial cooling fan with a large tip clearance, the internal flow measurements with tip leakage vortex were carried out at fan rotor outlet us- ing an I-type hot-wire probe. The probe was set toward two directions, parallel and normal to the meridional plane of test fan, and the two directional velocity components were measured. From the result of fan test it was found that the test fan didn't have the unstable characteristic with a positive gradient on its pressure - flow-rate curve. From the results of velocity measurement it was observed that the tip leakage vortex exited at maximum efficiency flow-rate and large flow-rate conditions. However, at small flow-rate conditions the tip leakage vortex was not observed and it was found that the flow field were enlarged toward radial outwards
文摘In these years, a lot of environmental problems such as air pollution and exhaustion of fossil fuels have been discussed intensively. In our laboratory, a hydrogen-fueled propulsion system has been researched as an alternative to conventional systems. A hydrogen-fueled propulsion system is expected to have higher power, lighter weight and lower emissions. However, for the practical use, there exist many problems that must be overcome. Considering these backgrounds, jet engines with hydrogen-fueled combustion within a turbine blade passage have been studied. Although some studies have been made on injecting and burning hydrogen fuel from a stator surface, little is known about the interaction between a tip leakage vortex near the suction side of a rotor tip and hydrogen-fueled combustion. The purpose of this study is to clarify the influence of the tip leakage vortex on the characteristics of the 3-dimensional flow field with hydrogen-fueled combustion within a turbine blade passage. Reynolds-averaged compressible Navier-Stokes equations are solved with incorporating a k-ε turbulence and a reduced chemical mechanism models. Using the computational results, the 3-dimensional turbulent flow field with chemical reactions is numerically visualized, and the three-dimensional turbulent flow fields with hydrogen combustion and the structure of the tip leakage vortex are investigated.
基金the National Key R&D Program of China(Grant No.2018YFB0106502)Open Fund of Science and Technology on Thermal Energy and Power Laboratory(No.TPL2017AB008).
文摘Heightened interests have been laid at the preliminary design and optimization of the centrifugal compressor for the fuel cell vehicle.The centrifugal compressor for fuel cell vehicle is driven by a high-speed motor;however,the limit of the motor speed makes the flow passage of the impeller long and narrow,which leads to a serious tip leakage loss.Serious tip leakage loss deteriorates the compressor performance.In this paper,3-D numerical simulations were carried out with the aim of investigating the tip leakage loss in a prototype centrifugal compressor for a 100 kW fuel cell stack.The results revealed that the mixing loss caused by the interaction between the tip leakage vortex and the downstream tip leakage flow contributed to the major part of the tip leakage loss.The path of the tip leakage vortex almost followed the streamwise direction,while the downstream tip leakage flow exhibited strong circumferential momentum,which referred to the fact that they were nearly orthogonal.Therefore,a flow control approach,which was realized by enhancing the blade loading around the leading edge of blade tips in this paper,was proposed to decrease the interaction angle between the tip leakage vortex and the downstream tip leakage flow and then mitigate mixing loss by changing the flow direction of the tip leakage vortex.The results showed a smaller interaction angle was achieved in the optimized impeller compared with the baseline one.Meanwhile,the efficiency was also improved by 1.30%at design condition and the maximum efficiency improvement could be up to 10%at large mass flow condition of 92000 r/min.Being manufactured and tested,the optimized compressor was proved to achieve an isentropic efficiency of 75.84%at design condition.
基金funded by the National Natural Science Foundation of China(Grant No.51776011)National Science and Technology Major Project(Grant No.2017-V-0016-0068)Key Laboratory of Defense Science and Technology Foundation of China(Grant No.6142702020218)。
文摘Tip leakage vortex(TLV),which develops from the clearance between the turbine blade and casing,has been studied for decades.Nevertheless,some associated phenomena,such as its unsteady behaviors,are still not well understood.In the present work,an unsteady simulation of a transonic turbine cascade was conducted by using a validated unsteady Reynolds averaged Navier-Stokes(URANS)technique with the k-ωshear stress transport(SST)turbulence model.Typical three-dimensional vortical topology in the tip region of this transonic turbine blade was depicted based on the vortex and shock wave identification.Afterwards,quantitative descriptions of TLV transient parameters,including core position,radius,intensity,wandering motion amplitude and their statistical analysis were also provided via an ellipse fitting method.Combined with the turbulent parameters in the tip region,it is recognized that the breakdown of TLV does not occur upstream of the trailing edge,and the TLV wandering,especially the spanwise motion is a dominant unsteady feature as migrating downstream.To mathematically extract underlying flow features of tip leakage flow(TLF),two data-driven modal analysis techniques,namely proper orthogonal decomposition(POD)and dynamic mode decomposition(DMD),are presented to complement one another to reveal underlying flow feature.Observation of modes distribution allowed qualitative identification of shockwaves,vortical cluster and corresponding transient interaction.Results of POD show that the dominant unsteady structures in the tip region exhibit various morphology with moving downstream.In the front part near the leading edge,the oscillation of separation bubble and bifurcation of passage vortex paly a dominant role;while in the middle part of the tip region,the corresponding factors are the wandering of TLV and unsteady interaction between shock waves and TLF/TLV.In the vicinity of the trailing edge,the instability induced by the mixing of large-scale vortices serves as the main factor in the context of flow unsteadiness.Both the POD and DMD methods can decompose the dominant frequency of TLV evolution and its harmonic frequencies;however,the DMD method presents a superiority in segregating the high-frequency components and their corresponding unsteady structures.
基金This project is supported by National Natural Science Foundation of China (No.50406017).
文摘The flow field in the tip region of an axial ventilation fan is investigated with a particle image velocimeter (PIV) system at the design condition. Flow fields with three different tip clearances are surveyed on three different circumferential planes, respectively. The phase-locked average method is used to investigate the generation and the development of a tip leakage vortex. The result from PIV system is compared with that from a particle dynamics anemometer(PDA) system. Both data are in good agreement and the structure of the tip leakage vortex for the rotor is illustrated. The characteristic of a leakage vortex is described in both velocity vectors and vortical contours. The unsteadiness of the leakage vortex and the position of the vortex are surveyed in detail, which interprets the discrepancy between the numerical simulation and PDA experimental results to a certain extent. The center loci of tip leakage vortex at different times and the mean center loci of the leakage vortex are displayed particularly. Finally, the trajectories of the tip leakage vortex by the experimental measurement are compared with predictions from the existing models for high speed and high-pressure compressors and turbines when appropriately interpreted. A good agreement is obtained.
文摘In an effort to reduce the blade tip clearance leakage in turbine designs, this article aims to numerically investigate the effects of active jet-flow injected from the blade tip platform upon the blade tip clearance flow. A CFD code integrated with dense-correction-based 3D Reynolds-averaged Navier-Stokes equations together with the well-proven Reynolds stress model (RSM) is adopted. The variation of specific heat is taken into consideration. The effects of jet-flow on the tip clearance flow are simulated ...
文摘For most aircraft engines,inflow distortion is inevitable.Inflow distortion is known to degrade the aerodynamic performance and stable operating limits of a compressor.Tandem rotor configuration is an arrangement that effectively controls the growth of the boundary layer over the suction surface of the blade.Therefore,a higher total pressure rise can be achieved through this unconventional design approach involving the splitting of the blade into forward and aft sections.It is expected that the effect of inlet flow distortion would be more severe for a tandem-rotor design due to the greater flow turning inherent in such designs.However,this aspect needs to be thoroughly examined.The present study discusses the effect of circumferential distortion on the tandem-rotor at different rotational speeds.Full-annulus RANS simulations using ANSYS CFX are used in the present study.The performance of the rotor at a particular flow coefficient and different rotational speeds is compared.The total pressure and efficiency are observed to drop at lower mass flow rates under the influence of circumferential distortion.The loss region in each blade passage is mainly associated with the blade wake,tip leakage vortex,secondary flow,and boundary layer.However,their contribution varies from passage to passage,particularly in the distorted sector.At the lower span,the wake width is found to be higher than that at a higher span.Due to the redistribution of the mass flow,the circumferential extent reduces at a higher span.In the undistorted sector,the strength of the tip leakage vortex is significantly higher at the design rotational speed than at lower speeds.The distortion near the tip region promotes an early vortex breakdown even at the design operating condition.This adversely affects the total pressure,efficiency,and stall margin.Under clean flow conditions,this phenomenon is only observed near the stall point.At the design operating condition,the breakdown of the forward rotor tip leakage vortex is detected in four blade passages.The axial velocity deficit and adverse pressure gradient play a significant role in the behaviour of tip leakage vortex at lower rotational speeds in the distorted sector.A twin vortex breakdown is also observed at lower speeds.
基金supported by the National Natural Science Foundation of China(Grant No.52376035).
文摘To reveal the cavitation forms of tip leakage vortex(TLV)of the axial flow pump and the flow mechanism of the flow field,this research adopts the partially-averaged Navier-Stokes(PANS)model to simulate the cavitation values of an axial flow pump,followed by experimental validation.The experimental result shows that compared with the shear stress transport(SST)k-ωmodel,the PANS model significantly reduces the eddy viscosity of the flow field to make the vortex structure clearer and allow the turbulence scale to be more robustly analyzed.The cavitation area within the axial flow pump mainly comprises of TLV cavitation,clearance cavitation and tip leakage flows combined effect of triangular cloud cavitation formed.The formation and development of cavitation are accompanied by the formation and evolution of vortex,and variations in vortex structure also generate and promote the development of cavitation.In addition,an in-depth analysis of the relationship between the turbulent kinetic energy(TKE)transport equation and cavitation patterns was also conducted,finding that the regions with relatively high TKE are mainly distributed around gas/liquid boundaries with serious cavitation and evident gas-liquid change.This phenomenon is mainly attributed to the combined effect of the pressure action term,stress diffusion term and TKE production term.
文摘In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the in- teraction with the main flow, and consequently makes the flow in the impeller passage more complex by the inte- raction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance cs- pccia|ly for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.
文摘This paper reports on numerical investigations aimed at understanding the influence of circumferential casing grooves on the tip leakage flow and its resulting vortical structures.The results and conclusions are based on steady state 3D numerical simulations of the well-known transonic axial compressor NASA Rotor 37 near stall operating conditions.The calculations carried out on the casing treatment configuration reveal an important modification of the vortex topology at the rotor tip clearance.Circumferential grooves limit the expansion of the tip leakage vortex in the direction perpendicular to the blade chord,but generate a set of secondary tip leakage vortices due to the interaction with the leakage mass flow.Finally,a deeper investigation of the tip leakage flow is proposed.
基金funded by the National Natural Science Foundation of China,Grant No.51006007,51136003 and 50976009
文摘A model to predict the double leakage and tip leakage leading edge spillage flows was developed. This model was combined by a TLV trajectory model and a TLV diameter model and formed as a function of compressor one-dimensional design parameters, i.e. the compressor massflow coefficient, Ф and compressor loading coeffi- cient, ψ, and some critical blade geometrical parameters, i.e. blade solidity, a, stagger angle, βs, blade chord length, C, and blade pitch length, S. By using this model, the double leakage and tip leakage leading edge spillage flow could be predicted even at the compressor preliminary design process. Considering the leading edge spillage flow usually indicates the inception of spike-type stall, i.e. the compressor is a tip critical design, this model could also be used as a tool to choose the critical design parameters for designers. At last, some experimental data from literature was used to validate the model and the results proved that the model was reliable.
基金supported by the National Natural Science Foundation of China(Grant No.51976006,52106039)This work was supported by the National Science and Technology Major Project(Grant No.2017-II-003-0015)+1 种基金the Aeronautical Science Foundation of China(Grant No.2018ZB51013)the Fundamental Research Funds for the Central Universities.
文摘Cavitation is a widespread and detrimental phenomenon in hydraulic machinery, therefore, it requires to be accurately predicted. In this study, large eddy simulation (LES), scale-adaptive simulation (SAS) and grid-adaptive simulation (GAS) are employed to investigate the unsteady cavitating flow around a NACA0009 hydrofoil. The prediction accuracy of GAS, SAS, both using the shear-stress transport (SST) k — ω model as baseline turbulence model, is validated by comparing with experimental and LES results. The cavity behaviors and turbulence fields are analyzed systematically. Results show that the GAS gives a more reasonable turbulent viscosity and accurately predicts the periodic evolution of typical vortical structures of cavitating flow, such as tip leakage vortex cavitation, tip separation vortex cavitation, leading-edge cavitation, and trailing-edge vortex. The time-averaged cavity volume, volume fluctuation amplitude, and characteristic frequencies of cavities predicted by the GAS are very closed to the LES, while the SAS fails to accurately capture these cavity characteristics. Furthermore, the local trace criterion is applied to extract the vortical structures and to analyze the swirling patterns of the tip leakage vortex. Multi-scale vortical structures in LES are well identified by local trace criterion. The prediction accuracy of the SAS method for small-scale vortical structures, such as the vortex shedding on the suction side and the vortex rope around the tip leakage vortex, is obviously insufficient, while the GAS has a higher accuracy in predicting vortex shedding. The tip leakage vortex and induced vortex extracted from GAS are also closer to that of LES in both swirling patterns and scale.
基金the National Natural Science Foundation of China(Grant No.:51076018)the Fundamental Research Funds for the Central UniversitiesSpecialized Research Fund for the Doctoral Program of Higher Education
文摘The tip leakage flow between a blade and a casing wall has a strong impact on compressor pressure rise capability, efficiency, and stability. Consequently, there is a strong motivation to look for means to minimize its impact on performance. This paper presents the potential of passive tip leakage flow control to increase the aerodynamic performance of highly loaded compressor blades. Experimental investigations on a linear compressor cascade equipped with blade winglets mounted to the blade tips have been carried out. Results for a variation of the tip clearance and the winglet geometry are presented. Current results indicate that the use of proper tip winglets in a compressor cascade can positively affect the local aerodynamic field by weakening the tip leakage vortex. Results also show that the suction-side winglets are aerodynamically superior to the pressure-side or combined winglets. The suction-side winglets are capable of reducing the exit total pressure loss associated with the tip leakage flow and the passage secondary flow to a significant degree.
基金subtask of the Sino-French project Advanced Experiments and Simulations of Complex Flow in Turbomachinesco-supported by the National Natural Science Foundation of China (Nos. 51161130525 and 51136003)+1 种基金the 111 Project (No. B07009)the Innovation Foundation of BUAA for Ph D Graduates (No. YWF-14YJSY-014)
文摘The inner flow environment of turbomachinery presents strong three-dimensional, rotational, and unsteady characteristics. Consequently, a deep understanding of these flow phenomena will be the prerequisite to establish a state-of-the-art design system of turbomachinery. Currently the development of more accurate turbulence models and CFD tools is in urgent need for a high-quality database for validation, especially the advanced CFD tools, such as large eddy simulation(LES). Under this circumstance, this paper presents a detailed experimental investigation on the 3D unsteady flow field inside a laboratory-scale isolated-rotor with multiple advanced measurement techniques, including traditional aerodynamic probes, hotwire probes, unsteady endwall static pressure measurement, and stereo particle image velocimetry(SPIV). The inlet boundary layer profile is measured with both hotwire probe and aerodynamic probe. The steady and unsteady flow fields at the outlet of the rotor are measured with a mini five-hole probe and a single-slanted hotwire probe. The instantaneous flow field in the rotor tip region inside the passage is captured with SPIV,and then a statistical analysis of the spatial distribution of the instantaneous tip leakage vortex/flow is performed to understand its dynamic characteristics. Besides these, the uncertainty analysis of each measurement technique is described. This database is quite sufficient to validate the advanced numerical simulation with LES. The identification process of the tip leakage vortex core in the instantaneous frames obtained from SPIV is performed deliberately. It is concluded that the ensemble-averaged flow field could not represent the tip leakage vortex strength and the trajectory trace. The development of the tip leakage vortex could be clearly cataloged into three phasesaccording to their statistical spatial distribution. The streamwise velocity loss induced by the tip leakage flow increases until the splitting process is weak and the turbulent mixing phase is dominant.
基金supported by the National Natural Science Foundations of China(Grant Nos.51436002 and 51906134)Liaoning Provincial Natural Science Foundation of China(2019-MS-030)Dalian High-level Talents Innovation Support Plan(2018RQ03)。
文摘In the present study,the research progress of tip winglets that control tip clearance leakage flow in compressors is reviewed.Firstly,the effects of tip leakage flow on the aerodynamic performance of the compressor are presented.Subsequently,the development of tip winglet technology is reviewed.Next,a series of studies on compressor tip winglet technology are conducted.Besides,the effects of tip winglets on the aerodynamic performance of rectangular cascades of low-speed and high-subsonic compressors,subsonic compressor rotor and transonic compressor rotor are discussed,respectively,and the control effect of tip winglet technology combined with tip groove design on tip leakage is investigated.Lastly,the subsequent development direction and research prospect of compressor tip winglet technology are presented.
基金co-supported by the National Natural Science Foundation of China(Grant No.51161130525/No.51136003)the 111Project(No.B07009)
文摘It is well known that the non-uniform tip geometry is a promising passive flow control technique in turbomachinery.However,detailed investigation of its effects on the unsteady flow field of turbomachinery is rare in the existiug hteratures.This paper presents an experimental investigation of effects of suction side squealer tip configuration on both the steady and unsteady flow field of an isolated compressor rotor.The flow field at 10%chord downstream from the trailing edge was measured using a mini five-hole probe.Meanwhile,the unsteady flow field inside the passage was investigated using stereo particle image velocimetry(SPIV).The steady results show that the SSQ tip configuration exerts positive effect on the static pressure rise performance of this compressor,and the radial equilibrium at the rotor outlet is obviously rearranged.The SSQ tip configuration would create a stronger tip leakage vortex at the formation phase,and it experiences a faster dissipation process around the rear chord.Also,the splitting process of the tip leakage vortex is severer,which is the main cause of the relatively higher probability of the presence of the streamwise reverse flow.The quantitatively analysis of the tip leakage vortex indicates that the velocity loss inside the blockage region is direct response of the evolutionary procedure of the tip leakage vortex.It keeps increasing until the end of the splitting process.Although the blockage coefficient grows sustainably,the velocity loss will reduce once the turbulent mixing procedure is dominant.
文摘As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head - flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carded out to understand the complicated internal flow structures in the rotors.