The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the l...The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%–94% as compared to the conventional approach.展开更多
With technology scaling into nanometer regime, rampant process variations impact visible influences on leakage power estimation of very large scale integrations (VLSIs). In order to deal with the case of large inter- ...With technology scaling into nanometer regime, rampant process variations impact visible influences on leakage power estimation of very large scale integrations (VLSIs). In order to deal with the case of large inter- and intra-die variations, we induce a novel theory prototype of the statistical leakage power analysis (SLPA) for function blocks. Because inter-die variations can be pinned down into a small range but the number of gates in function blocks is large(>1000), we continue to simplify the prototype. At last, we induce the efficient methodology of SLPA. The method can save much running time for SLPA in the low power design since it is of the local-updating advantage. A large number of experimental data show that the method only takes feasible running time (0.32 s) to obtain accurate results (3 σ-error <0.5% on maximum) as function block circuits simultaneous suffer from 7.5%(3 σ/mean) inter-die and 7.5% intra-die length variations, which demonstrates that our method is suitable for statistical leakage power analysis of VLSIs under rampant process variations.展开更多
Leakage power analysis(LPA) attacks aim at finding the secret key of a cryptographic device from measurements of its static(leakage) power. This novel power analysis attacks take advantage of the dependence of the lea...Leakage power analysis(LPA) attacks aim at finding the secret key of a cryptographic device from measurements of its static(leakage) power. This novel power analysis attacks take advantage of the dependence of the leakage power of complementary metal oxide semiconductor(CMOS) integrated circuits on the data they process. This paper proposes symmetric dual-rail logic(SDRL), a standard cell LPA attack countermeasure that theoretically resists the LPA attacks. The technique combines standard building blocks to make new compound standard cells, which are close to constant leakage power consumption. Experiment results show SDRL is a promising approach to implement an LPA-resistant crypto processor.展开更多
Field programmable gate array (FPGA) devices have become widespread in electronic systems due to their low design costs and reconfigurability.In battery-restricted applications such as handheld electronics systems,low...Field programmable gate array (FPGA) devices have become widespread in electronic systems due to their low design costs and reconfigurability.In battery-restricted applications such as handheld electronics systems,low-power FPGAs are in great demand.Leakage power almost equals dynamic power in modern integrated circuit technologies,so the reduction of leakage power leads to significant energy savings.We propose a power-efficient architecture for static random access memory(SRAM) based FPGAs,in which two modes (active mode and sleep mode) are defined for each module.In sleep mode,ultralow leakage power is consumed by the module.The module mode changes dynamically from sleep mode to active mode when module outputs evaluate for new input vectors.After producing the correct outputs,the module returns to sleep mode.The proposed circuit design reduces the leakage power consumption in both active and sleep modes.The proposed low-leakage FPGA architecture is compared with state-of-the-art architectures by implementing Microelectronics Center of North Carolina(MCNC) benchmark circuits on FPGA-SPICE software.Simulation results show an approximately 95%reduction in leakage power consumption in sleep mode.Moreover,the total power consumption (leakage+dynamic power consumption) is reduced by more than 15%compared with that of the best previous design.The average area overhead (4.26%) is less than those of other powergating designs.展开更多
A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many po...A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many power den-sity issues should be reduced by scaling threshold voltage and supply voltage.Initially,Complementary Metal Oxide Semiconductor(CMOS)technology sup-ports power saving up to 32 nm gate length,but further scaling causes short severe channel effects such as threshold voltage swing,mobility degradation,and more leakage power(less than 32)at gate length.Hence,it directly affects the arithmetic logic unit(ALU),which suffers a significant power density of the scaled multi-core architecture.Therefore,it losses reliability features to get overheating and increased temperature.This paper presents a novel power mini-mization technique for active 4-bit ALU operations using Fin Field Effect Tran-sistor(FinFET)at 22 nm technology.Based on this,a diode is directly connected to the load transistor,and it is active only at the saturation region as a function.Thereby,the access transistor can cutoff of the leakage current,and sleep transis-tors control theflow of leakage current corresponding to each instant ALU opera-tion.The combination of transistors(access and sleep)reduces the leakage current from micro to nano-ampere.Further,the power minimization is achieved by con-necting the number of transistors(6T and 10T)of the FinFET structure to ALU with 22 nm technology.For simulation concerns,a Tanner(T-Spice)with 22 nm technology implements the proposed design,which reduces threshold vol-tage swing,supply power,leakage current,gate length delay,etc.As a result,it is quite suitable for the ALU architecture of a high-speed multi-core processor.展开更多
Terahertz(THz)wireless communication has the capability to connect massive devices using its ultra-large spectrum resource.We propose a hybrid precoding scheme for the cluster-based multi-carrier beam division multipl...Terahertz(THz)wireless communication has the capability to connect massive devices using its ultra-large spectrum resource.We propose a hybrid precoding scheme for the cluster-based multi-carrier beam division multiple access(MC-BDMA)to enable THz massive connections.Both the inter-beam interference and inter-band power leakage in this system are considered.A mathematical model is established to analyze and reduce their effects on the THz signal transmission.By considering the peculiarities of THz channels and characteristics of THz hardware components,we further propose a three-step hybrid precoding algorithm with low complexity,where the received signal power enhancement,the inter-beam interference elimination,and the inter-band power leakage suppression are conducted in succession.Simulation results are presented to demonstrate the high spectrum efficiency and high energy efficiency of our proposed algorithm,especially in the massive-connection scenarios.展开更多
Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A nov...Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.展开更多
It is a well-known fact that test power consumption may exceed that during functional operation. Leakage power dissipation caused by leakage current in Complementary Metal-Oxide-Semiconductor (CMOS) circuits during ...It is a well-known fact that test power consumption may exceed that during functional operation. Leakage power dissipation caused by leakage current in Complementary Metal-Oxide-Semiconductor (CMOS) circuits during test has become a significant part of the total power dissipation. Hence, it is important to reduce leakage power to prolong battery life in portable systems which employ periodic self-test, to increase test reliability and to reduce test cost. This paper analyzes leakage current and presents a kind of leakage current simulator based on the transistor stacking effect. Using it, we propose techniques based on don't care bits (denoted by Xs) in test vectors to optimize leakage current in integrated circuit (IC) test by genetic algorithm. The techniques identify a set of don't care inputs in given test vectors and reassign specified logic values to the X inputs by the genetic algorithm to get minimum leakage vector (MLV). Experimental results indicate that the techniques can effectually optimize leakage current of combinational circuits and sequential circuits during test while maintaining high fault coverage,展开更多
As semi-conductor technologies move down to the nanometer scale, leakage power has become a significant component of the total power consumption. In this paper, we present a leakage-aware modulo scheduling algorithm t...As semi-conductor technologies move down to the nanometer scale, leakage power has become a significant component of the total power consumption. In this paper, we present a leakage-aware modulo scheduling algorithm to achieve leakage energy saving for applications with loops on Very Long Instruction Word (VLIW) architectures. The proposed algorithm is designed to maximize the idleness of function units integrated with the dual-threshold domino logic, and reduce the number of transitions between the active and sleep modes. We have implemented our technique in the Trimaran compiler and conducted experiments using a set of embedded benchmarks from DSPstone and Mibench on the cycle-accurate VLIW simulator of Trimaran. The results show that our technique achieves significant leakage energy saving compared with a previously published DAG-based (Directed Acyclic Graph) leakage-aware scheduling algorithm.展开更多
We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode(performs no data read/write operations) and active mode (perfor...We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode(performs no data read/write operations) and active mode (performs data read/write operations),along with the requirements for the overall standby leakage power,active write and read powers.A comparison has been drawn with existing SRAM cell structures,the conventional 6T,PP, P4 and P3 cells.At the supply voltage,V_(DD) = 0.8 V,a reduction of 98%,99%,92%and 94%is observed in the gate leakage current in comparison with the 6T,PP,P4 and P3 SRAM cells,respectively,while at V_(DD) = 0.7 V,it is 97%,98%,87%and 84%.A significant reduction is also observed in the overall standby leakage power by 56%〉, the active write power by 44%and the active read power by 99%,compared with the conventional 6T SRAM cell at V_(DD)= 0.8 V,with no loss in cell stability and performance with a small area penalty.The simulation environment used for this work is 45 nm deep sub-micron complementary metal oxide semiconductor(CMOS) technology,t_(ox) = 2.4 nm,K_(thn) = 0.22 V,K_(thp) = 0.224 V,V_(DD) = 0.7 V and 0.8 V,at T = 300 K.展开更多
A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and st...A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes.To minimize leakage,a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty.Combined with buffering circuit and reconfigurable operation,the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region.Compared to the referenced subthreshold SRAM bitcell,the proposed bitcell shows:(1) a better critical state noise margin,and(2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13μW power consumption at 138 kHz frequency.展开更多
The present paper analyzes the hold and read stability with temperature and aspect ratio variations. To reduce the power dissipation, one of the effective techniques is the supply voltage reduction. At this reduced su...The present paper analyzes the hold and read stability with temperature and aspect ratio variations. To reduce the power dissipation, one of the effective techniques is the supply voltage reduction. At this reduced supply voltage the data must be stable. So, the minimum voltage should be discovered which can also retain the data. This voltage is the data retention voltage(DRV). The DRV for 6T SRAM cell is estimated and analyzed in this paper.The sensitivity analysis is performed for the DRV variation with the variation in the temperature and aspect ratio of the pull up and pull down transistors. Cadence Virtuoso is used for DRV analysis using 45 nm GPDK technology files. After this, the read stability analysis of 6T SRAM cell in terms of SRRV(supply read retention voltage) and WRRV(wordline read retention voltage) is carried out. Read stability in terms of RSNM can be discovered by accessing the internal storage nodes. But in the case of dense SRAM arrays instead of using internal storage nodes,the stability can be discovered by using direct bit line measurements with the help of SRRV and WRRV. SRRV is used to find the minimum supply voltage for which data can be retained during a read operation. Similarly, WRRV is used to find the boosted value of wordline voltage, for which data can be retained during read operation. The SRRV and WRRV values are then analyzed for different Cell Ratios. The results of SRRV and WRRV are then compared with the reported data for the validation of the accuracy of the results.展开更多
文摘The circuit proposed in this paper simultaneously reduces the sub threshold leakage power and saves the state of art aspect of the logic circuits. Sleep transistors and PMOS-only logic are used to further reduce the leakage power. Sleep transistors are used as the keepers to reduce the sub threshold leakage current providing the low resistance path to the output. PMOS-only logic is used between the pull up and pull down devices to mitigate the leakage power further. Our proposed fast efficient leakage reduction circuit not only reduces the leakage current but also reduces the power dissipation. Power and delay are analyzed at the 32 nm BSIM4 model for a chain of four inverters, NAND, NOR and ISCAS-85 c17 benchmark circuits using DSCH3 and the Microwind tool. The simulation results reveal that our proposed approach mitigates leakage power by 90%–94% as compared to the conventional approach.
基金the National Natural Science Foundation of China (No.60476014)
文摘With technology scaling into nanometer regime, rampant process variations impact visible influences on leakage power estimation of very large scale integrations (VLSIs). In order to deal with the case of large inter- and intra-die variations, we induce a novel theory prototype of the statistical leakage power analysis (SLPA) for function blocks. Because inter-die variations can be pinned down into a small range but the number of gates in function blocks is large(>1000), we continue to simplify the prototype. At last, we induce the efficient methodology of SLPA. The method can save much running time for SLPA in the low power design since it is of the local-updating advantage. A large number of experimental data show that the method only takes feasible running time (0.32 s) to obtain accurate results (3 σ-error <0.5% on maximum) as function block circuits simultaneous suffer from 7.5%(3 σ/mean) inter-die and 7.5% intra-die length variations, which demonstrates that our method is suitable for statistical leakage power analysis of VLSIs under rampant process variations.
基金the Software and Integrated CircuitIndustries Development Foundation of Shanghai(No.12Z116010001)
文摘Leakage power analysis(LPA) attacks aim at finding the secret key of a cryptographic device from measurements of its static(leakage) power. This novel power analysis attacks take advantage of the dependence of the leakage power of complementary metal oxide semiconductor(CMOS) integrated circuits on the data they process. This paper proposes symmetric dual-rail logic(SDRL), a standard cell LPA attack countermeasure that theoretically resists the LPA attacks. The technique combines standard building blocks to make new compound standard cells, which are close to constant leakage power consumption. Experiment results show SDRL is a promising approach to implement an LPA-resistant crypto processor.
文摘Field programmable gate array (FPGA) devices have become widespread in electronic systems due to their low design costs and reconfigurability.In battery-restricted applications such as handheld electronics systems,low-power FPGAs are in great demand.Leakage power almost equals dynamic power in modern integrated circuit technologies,so the reduction of leakage power leads to significant energy savings.We propose a power-efficient architecture for static random access memory(SRAM) based FPGAs,in which two modes (active mode and sleep mode) are defined for each module.In sleep mode,ultralow leakage power is consumed by the module.The module mode changes dynamically from sleep mode to active mode when module outputs evaluate for new input vectors.After producing the correct outputs,the module returns to sleep mode.The proposed circuit design reduces the leakage power consumption in both active and sleep modes.The proposed low-leakage FPGA architecture is compared with state-of-the-art architectures by implementing Microelectronics Center of North Carolina(MCNC) benchmark circuits on FPGA-SPICE software.Simulation results show an approximately 95%reduction in leakage power consumption in sleep mode.Moreover,the total power consumption (leakage+dynamic power consumption) is reduced by more than 15%compared with that of the best previous design.The average area overhead (4.26%) is less than those of other powergating designs.
文摘A design of a high-speed multi-core processor with compact size is a trending approach in the Integrated Circuits(ICs)fabrication industries.Because whenever device size comes down into narrow,designers facing many power den-sity issues should be reduced by scaling threshold voltage and supply voltage.Initially,Complementary Metal Oxide Semiconductor(CMOS)technology sup-ports power saving up to 32 nm gate length,but further scaling causes short severe channel effects such as threshold voltage swing,mobility degradation,and more leakage power(less than 32)at gate length.Hence,it directly affects the arithmetic logic unit(ALU),which suffers a significant power density of the scaled multi-core architecture.Therefore,it losses reliability features to get overheating and increased temperature.This paper presents a novel power mini-mization technique for active 4-bit ALU operations using Fin Field Effect Tran-sistor(FinFET)at 22 nm technology.Based on this,a diode is directly connected to the load transistor,and it is active only at the saturation region as a function.Thereby,the access transistor can cutoff of the leakage current,and sleep transis-tors control theflow of leakage current corresponding to each instant ALU opera-tion.The combination of transistors(access and sleep)reduces the leakage current from micro to nano-ampere.Further,the power minimization is achieved by con-necting the number of transistors(6T and 10T)of the FinFET structure to ALU with 22 nm technology.For simulation concerns,a Tanner(T-Spice)with 22 nm technology implements the proposed design,which reduces threshold vol-tage swing,supply power,leakage current,gate length delay,etc.As a result,it is quite suitable for the ALU architecture of a high-speed multi-core processor.
基金the National Natural Science Foundation of China under Grant No.61771054.
文摘Terahertz(THz)wireless communication has the capability to connect massive devices using its ultra-large spectrum resource.We propose a hybrid precoding scheme for the cluster-based multi-carrier beam division multiple access(MC-BDMA)to enable THz massive connections.Both the inter-beam interference and inter-band power leakage in this system are considered.A mathematical model is established to analyze and reduce their effects on the THz signal transmission.By considering the peculiarities of THz channels and characteristics of THz hardware components,we further propose a three-step hybrid precoding algorithm with low complexity,where the received signal power enhancement,the inter-beam interference elimination,and the inter-band power leakage suppression are conducted in succession.Simulation results are presented to demonstrate the high spectrum efficiency and high energy efficiency of our proposed algorithm,especially in the massive-connection scenarios.
基金Supported by National Natural Science Foundation of China(Grant No.50877013)
文摘Transverse-flux with high efficiency has been applied in Stirling engine and permanent magnet synchronous linear generator system,however it is restricted for large application because of low and complex process.A novel type of cylindrical,non-overlapping,transverse-flux,and permanent-magnet linear motor(TFPLM) is investigated,furthermore,a high power factor and less process complexity structure research is developed.The impact of magnetic leakage factor on power factor is discussed,by using the Finite Element Analysis(FEA) model of stirling engine and TFPLM,an optimization method for electro-magnetic design of TFPLM is proposed based on magnetic leakage factor.The relation between power factor and structure parameter is investigated,and a structure parameter optimization method is proposed taking power factor maximum as a goal.At last,the test bench is founded,starting experimental and generating experimental are performed,and a good agreement of simulation and experimental is achieved.The power factor is improved and the process complexity is decreased.This research provides the instruction to design high-power factor permanent-magnet linear generator.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grant Nos.60576031,60633060,60606008,90607010,the National Grand Fundamental Research 973 Program of China under Grant Nos.2005CB321604 and 2005CB321605the Science Foundation of Hefei University of Technology under Grant Nos. 070501F and 060501F.Y.Han's work is also supported by the fund of Chinese Academy of Sciences due to the President Scholarship.
文摘It is a well-known fact that test power consumption may exceed that during functional operation. Leakage power dissipation caused by leakage current in Complementary Metal-Oxide-Semiconductor (CMOS) circuits during test has become a significant part of the total power dissipation. Hence, it is important to reduce leakage power to prolong battery life in portable systems which employ periodic self-test, to increase test reliability and to reduce test cost. This paper analyzes leakage current and presents a kind of leakage current simulator based on the transistor stacking effect. Using it, we propose techniques based on don't care bits (denoted by Xs) in test vectors to optimize leakage current in integrated circuit (IC) test by genetic algorithm. The techniques identify a set of don't care inputs in given test vectors and reassign specified logic values to the X inputs by the genetic algorithm to get minimum leakage vector (MLV). Experimental results indicate that the techniques can effectually optimize leakage current of combinational circuits and sequential circuits during test while maintaining high fault coverage,
基金supported by the National Natural Science Foundation of China under Grant Nos. 60873006 and 61070049the International Collaborative Research Program under Grant No. 2010DFB10930+1 种基金the Beijing Science Foundation under Grant No.KZ200910028007the Australian Research Council (ARC) under Grant No. DP0881330
文摘As semi-conductor technologies move down to the nanometer scale, leakage power has become a significant component of the total power consumption. In this paper, we present a leakage-aware modulo scheduling algorithm to achieve leakage energy saving for applications with loops on Very Long Instruction Word (VLIW) architectures. The proposed algorithm is designed to maximize the idleness of function units integrated with the dual-threshold domino logic, and reduce the number of transitions between the active and sleep modes. We have implemented our technique in the Trimaran compiler and conducted experiments using a set of embedded benchmarks from DSPstone and Mibench on the cycle-accurate VLIW simulator of Trimaran. The results show that our technique achieves significant leakage energy saving compared with a previously published DAG-based (Directed Acyclic Graph) leakage-aware scheduling algorithm.
文摘We have presented an analysis of the gate leakage current of the IP3 static random access memory (SRAM) cell structure when the cell is in idle mode(performs no data read/write operations) and active mode (performs data read/write operations),along with the requirements for the overall standby leakage power,active write and read powers.A comparison has been drawn with existing SRAM cell structures,the conventional 6T,PP, P4 and P3 cells.At the supply voltage,V_(DD) = 0.8 V,a reduction of 98%,99%,92%and 94%is observed in the gate leakage current in comparison with the 6T,PP,P4 and P3 SRAM cells,respectively,while at V_(DD) = 0.7 V,it is 97%,98%,87%and 84%.A significant reduction is also observed in the overall standby leakage power by 56%〉, the active write power by 44%and the active read power by 99%,compared with the conventional 6T SRAM cell at V_(DD)= 0.8 V,with no loss in cell stability and performance with a small area penalty.The simulation environment used for this work is 45 nm deep sub-micron complementary metal oxide semiconductor(CMOS) technology,t_(ox) = 2.4 nm,K_(thn) = 0.22 V,K_(thp) = 0.224 V,V_(DD) = 0.7 V and 0.8 V,at T = 300 K.
基金supported by the China State-Funded Study Abroad Program for High-Level Universities
文摘A low leakage current subthreshold SRAM in 130 nm CMOS technology is proposed for ultra low voltage(200 mV) applications.Almost all of the previous subthreshold works ignore the leakage current in both active and standby modes.To minimize leakage,a self-adaptive leakage cut off scheme is adopted in the proposed design without any extra dynamic energy dissipation or performance penalty.Combined with buffering circuit and reconfigurable operation,the proposed design ensures both read and standby stability without deteriorating writability in the subthreshold region.Compared to the referenced subthreshold SRAM bitcell,the proposed bitcell shows:(1) a better critical state noise margin,and(2) smaller leakage current in both active and standby modes. Measurement results show that the proposed SRAM functions well at a 200 mV supply voltage with 0.13μW power consumption at 138 kHz frequency.
文摘The present paper analyzes the hold and read stability with temperature and aspect ratio variations. To reduce the power dissipation, one of the effective techniques is the supply voltage reduction. At this reduced supply voltage the data must be stable. So, the minimum voltage should be discovered which can also retain the data. This voltage is the data retention voltage(DRV). The DRV for 6T SRAM cell is estimated and analyzed in this paper.The sensitivity analysis is performed for the DRV variation with the variation in the temperature and aspect ratio of the pull up and pull down transistors. Cadence Virtuoso is used for DRV analysis using 45 nm GPDK technology files. After this, the read stability analysis of 6T SRAM cell in terms of SRRV(supply read retention voltage) and WRRV(wordline read retention voltage) is carried out. Read stability in terms of RSNM can be discovered by accessing the internal storage nodes. But in the case of dense SRAM arrays instead of using internal storage nodes,the stability can be discovered by using direct bit line measurements with the help of SRRV and WRRV. SRRV is used to find the minimum supply voltage for which data can be retained during a read operation. Similarly, WRRV is used to find the boosted value of wordline voltage, for which data can be retained during read operation. The SRRV and WRRV values are then analyzed for different Cell Ratios. The results of SRRV and WRRV are then compared with the reported data for the validation of the accuracy of the results.