Dynamic hand gesture recognition is a desired alternative means for human-computer interactions.This paper presents a hand gesture recognition system that is designed for the control of flights of unmanned aerial vehi...Dynamic hand gesture recognition is a desired alternative means for human-computer interactions.This paper presents a hand gesture recognition system that is designed for the control of flights of unmanned aerial vehicles(UAV).A data representation model that represents a dynamic gesture sequence by converting the 4-D spatiotemporal data to 2-D matrix and a 1-D array is introduced.To train the system to recognize designed gestures,skeleton data collected from a Leap Motion Controller are converted to two different data models.As many as 9124 samples of the training dataset,1938 samples of the testing dataset are created to train and test the proposed three deep learning neural networks,which are a 2-layer fully connected neural network,a 5-layer fully connected neural network and an 8-layer convolutional neural network.The static testing results show that the 2-layer fully connected neural network achieves an average accuracy of 96.7%on scaled datasets and 12.3%on non-scaled datasets.The 5-layer fully connected neural network achieves an average accuracy of 98.0%on scaled datasets and 89.1%on non-scaled datasets.The 8-layer convolutional neural network achieves an average accuracy of 89.6%on scaled datasets and 96.9%on non-scaled datasets.Testing on a drone-kit simulator and a real drone shows that this system is feasible for drone flight controls.展开更多
文摘Dynamic hand gesture recognition is a desired alternative means for human-computer interactions.This paper presents a hand gesture recognition system that is designed for the control of flights of unmanned aerial vehicles(UAV).A data representation model that represents a dynamic gesture sequence by converting the 4-D spatiotemporal data to 2-D matrix and a 1-D array is introduced.To train the system to recognize designed gestures,skeleton data collected from a Leap Motion Controller are converted to two different data models.As many as 9124 samples of the training dataset,1938 samples of the testing dataset are created to train and test the proposed three deep learning neural networks,which are a 2-layer fully connected neural network,a 5-layer fully connected neural network and an 8-layer convolutional neural network.The static testing results show that the 2-layer fully connected neural network achieves an average accuracy of 96.7%on scaled datasets and 12.3%on non-scaled datasets.The 5-layer fully connected neural network achieves an average accuracy of 98.0%on scaled datasets and 89.1%on non-scaled datasets.The 8-layer convolutional neural network achieves an average accuracy of 89.6%on scaled datasets and 96.9%on non-scaled datasets.Testing on a drone-kit simulator and a real drone shows that this system is feasible for drone flight controls.