日益频繁的鸟类活动给输电线路的安全运行带来了极大威胁,而现有拟声驱鸟装置由于缺乏智能性,无法长期有效驱鸟.为了解决上述问题,本文提出基于改进Q⁃learning算法的拟声驱鸟策略.首先,为了评价各音频的驱鸟效果,结合模糊理论,将鸟类听...日益频繁的鸟类活动给输电线路的安全运行带来了极大威胁,而现有拟声驱鸟装置由于缺乏智能性,无法长期有效驱鸟.为了解决上述问题,本文提出基于改进Q⁃learning算法的拟声驱鸟策略.首先,为了评价各音频的驱鸟效果,结合模糊理论,将鸟类听到音频后的动作行为量化为不同鸟类反应类型.然后,设计单一音频驱鸟实验,统计各音频驱鸟效果数据,得到各音频的初始权重值,为拟声驱鸟装置的音频选择提供实验依据.为了使计算所得的音频权重值更符合实际实验情况,对CRITIC(Criteria Impor⁃tance Though Intercrieria Correlation)方法的权重计算公式进行了优化.最后,使用实验所得音频权重值对Q⁃learning算法进行改进,并设计与其他拟声驱鸟策略的对比实验,实验数据显示改进Q⁃learning算法的拟声驱鸟策略驱鸟效果优于其他三种驱鸟策略,收敛速度快,驱鸟效果稳定,能够降低鸟类的适应性.展开更多
文摘日益频繁的鸟类活动给输电线路的安全运行带来了极大威胁,而现有拟声驱鸟装置由于缺乏智能性,无法长期有效驱鸟.为了解决上述问题,本文提出基于改进Q⁃learning算法的拟声驱鸟策略.首先,为了评价各音频的驱鸟效果,结合模糊理论,将鸟类听到音频后的动作行为量化为不同鸟类反应类型.然后,设计单一音频驱鸟实验,统计各音频驱鸟效果数据,得到各音频的初始权重值,为拟声驱鸟装置的音频选择提供实验依据.为了使计算所得的音频权重值更符合实际实验情况,对CRITIC(Criteria Impor⁃tance Though Intercrieria Correlation)方法的权重计算公式进行了优化.最后,使用实验所得音频权重值对Q⁃learning算法进行改进,并设计与其他拟声驱鸟策略的对比实验,实验数据显示改进Q⁃learning算法的拟声驱鸟策略驱鸟效果优于其他三种驱鸟策略,收敛速度快,驱鸟效果稳定,能够降低鸟类的适应性.