This paper conducts the discussion on the role of the computer technology in promoting students’ Interest in learning. Students’ interest in learning is constantly evolving from low to high levels, through fun, fun ...This paper conducts the discussion on the role of the computer technology in promoting students’ Interest in learning. Students’ interest in learning is constantly evolving from low to high levels, through fun, fun and interest in three stages. In interesting stages, the interest of the student is associated with the external characteristics of the stimulus, such as the interest of the novel and interesting teaching content, and when these factors disappear, the interest will soon drop or even disappear. In the computer aided teaching process, the advancement independent study mechanism founds, this time the student community is regarded as the teaching main body, becomes the study the master, the student may act according to own study progress condition to carry on the content repetition study. From this perspective, this paper proposes the novel idea that will later promote the further development of the related subjects.展开更多
Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms fo...Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms for this problem. Considering the unreliability of high order condition independence(CI) tests, and to improve the efficiency of a dependency analysis algorithm, the key steps are to use few numbers of CI tests and reduce the sizes of conditioning sets as much as possible. Based on these reasons and inspired by the algorithm PC, we present an algorithm, named fast and efficient PC(FEPC), for learning the adjacent neighbourhood of every variable. FEPC implements the CI tests by three kinds of orders, which reduces the high order CI tests significantly. Compared with current algorithm proposals, the experiment results show that FEPC has better accuracy with fewer numbers of condition independence tests and smaller size of conditioning sets. The highest reduction percentage of CI test is 83.3% by EFPC compared with PC algorithm.展开更多
The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular int...The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.展开更多
文摘This paper conducts the discussion on the role of the computer technology in promoting students’ Interest in learning. Students’ interest in learning is constantly evolving from low to high levels, through fun, fun and interest in three stages. In interesting stages, the interest of the student is associated with the external characteristics of the stimulus, such as the interest of the novel and interesting teaching content, and when these factors disappear, the interest will soon drop or even disappear. In the computer aided teaching process, the advancement independent study mechanism founds, this time the student community is regarded as the teaching main body, becomes the study the master, the student may act according to own study progress condition to carry on the content repetition study. From this perspective, this paper proposes the novel idea that will later promote the further development of the related subjects.
基金Supported by the National Natural Science Foundation of China(61403290,11301408,11401454)the Foundation for Youths of Shaanxi Province(2014JQ1020)+1 种基金the Foundation of Baoji City(2013R7-3)the Foundation of Baoji University of Arts and Sciences(ZK15081)
文摘Learning Bayesian network structure is one of the most exciting challenges in machine learning. Discovering a correct skeleton of a directed acyclic graph(DAG) is the foundation for dependency analysis algorithms for this problem. Considering the unreliability of high order condition independence(CI) tests, and to improve the efficiency of a dependency analysis algorithm, the key steps are to use few numbers of CI tests and reduce the sizes of conditioning sets as much as possible. Based on these reasons and inspired by the algorithm PC, we present an algorithm, named fast and efficient PC(FEPC), for learning the adjacent neighbourhood of every variable. FEPC implements the CI tests by three kinds of orders, which reduces the high order CI tests significantly. Compared with current algorithm proposals, the experiment results show that FEPC has better accuracy with fewer numbers of condition independence tests and smaller size of conditioning sets. The highest reduction percentage of CI test is 83.3% by EFPC compared with PC algorithm.
基金project of Technical Aspects of Monitoring the Acoustic Quality of Infrastructure in Road Transport(3714541000)commissioned by the German Federal Environment Agencyfunded by the Federal Ministry for the Environment,Nature Conservation,Building and Nuclear Safety,Germany,within the Environmental Research Plan 2014.
文摘The condition of the road infrastructure has severe impacts on the road safety, driving comfort, and on the rolling resistance. Therefore, the road infrastructure must be moni- tored comprehensively and in regular intervals to identify damaged road segments and road hazards. Methods have been developed to comprehensively and automatically digitize the road infrastructure and estimate the road quality, which are based on vehicle sensors and a supervised machine learning classification. Since different types of vehicles have various suspension systems with different response functions, one classifier cannot be taken over to other vehicles. Usually, a high amount of time is needed to acquire training data for each individual vehicle and classifier. To address this problem, the methods to collect training data automatically for new vehicles based on the comparison of trajectories of untrained and trained vehicles have been developed. The results show that the method based on a k-dimensional tree and Euclidean distance performs best and is robust in transferring the information of the road surface from one vehicle to another. Furthermore, this method offers the possibility to merge the output and road infrastructure information from multiple vehicles to enable a more robust and precise prediction of the ground truth.