Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for ...Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for training Artificial Neural Networks (ANNs) has remained a challenging task due to the diverse sizes, complexity, and types of data involved. Design/Method/Approach: This research used a RandomizedSearchCV algorithm, a random search approach, to bridge this knowledge gap. The algorithm was applied to container dwell time data from the TOS system of the Port of Tema, which included 307,594 container records from 2014 to 2022. Findings: The RandomizedSearchCV method outperformed standard training methods both in terms of reducing training time and improving prediction accuracy, highlighting the significant role of the constant learning rate as a hyperparameter. Research Limitations and Implications: Although the study provides promising outcomes, the results are limited to the data extracted from the Port of Tema and may differ in other contexts. Further research is needed to generalize these findings across various port systems. Originality/Value: This research underscores the potential of RandomizedSearchCV as a valuable tool for optimizing ANN training in container dwell time prediction. It also accentuates the significance of automated learning rate selection, offering novel insights into the optimization of container dwell time prediction, with implications for improving port efficiency and supply chain operations.展开更多
Coronavirus(COVID-19)outbreak was first identified in Wuhan,China in December 2019.It was tagged as a pandemic soon by the WHO being a serious public medical conditionworldwide.In spite of the fact that the virus can ...Coronavirus(COVID-19)outbreak was first identified in Wuhan,China in December 2019.It was tagged as a pandemic soon by the WHO being a serious public medical conditionworldwide.In spite of the fact that the virus can be diagnosed by qRT-PCR,COVID-19 patients who are affected with pneumonia and other severe complications can only be diagnosed with the help of Chest X-Ray(CXR)and Computed Tomography(CT)images.In this paper,the researchers propose to detect the presence of COVID-19 through images using Best deep learning model with various features.Impressive features like Speeded-Up Robust Features(SURF),Features from Accelerated Segment Test(FAST)and Scale-Invariant Feature Transform(SIFT)are used in the test images to detect the presence of virus.The optimal features are extracted from the images utilizing DeVGGCovNet(Deep optimal VGG16)model through optimal learning rate.This task is accomplished by exceptional mating conduct of Black Widow spiders.In this strategy,cannibalism is incorporated.During this phase,fitness outcomes are rejected and are not satisfied by the proposed model.The results acquired from real case analysis demonstrate the viability of DeVGGCovNet technique in settling true issues using obscure and testing spaces.VGG16 model identifies the imagewhich has a place with which it is dependent on the distinctions in images.The impact of the distinctions on labels during training stage is studied and predicted for test images.The proposed model was compared with existing state-of-the-art models and the results from the proposed model for disarray grid estimates like Sen,Spec,Accuracy and F1 score were promising.展开更多
文摘Purpose: This study aimed to enhance the prediction of container dwell time, a crucial factor for optimizing port operations, resource allocation, and supply chain efficiency. Determining an optimal learning rate for training Artificial Neural Networks (ANNs) has remained a challenging task due to the diverse sizes, complexity, and types of data involved. Design/Method/Approach: This research used a RandomizedSearchCV algorithm, a random search approach, to bridge this knowledge gap. The algorithm was applied to container dwell time data from the TOS system of the Port of Tema, which included 307,594 container records from 2014 to 2022. Findings: The RandomizedSearchCV method outperformed standard training methods both in terms of reducing training time and improving prediction accuracy, highlighting the significant role of the constant learning rate as a hyperparameter. Research Limitations and Implications: Although the study provides promising outcomes, the results are limited to the data extracted from the Port of Tema and may differ in other contexts. Further research is needed to generalize these findings across various port systems. Originality/Value: This research underscores the potential of RandomizedSearchCV as a valuable tool for optimizing ANN training in container dwell time prediction. It also accentuates the significance of automated learning rate selection, offering novel insights into the optimization of container dwell time prediction, with implications for improving port efficiency and supply chain operations.
基金The authors are grateful to Taif University Researchers Supporting Project Number(TURSP-2020/215)Taif University,Taif,Saudi Arabia.This work is also supported by the Faculty of Computer Science and Information Technology,University of Malaya,under Postgraduate Research Grant(PG035-2016A).
文摘Coronavirus(COVID-19)outbreak was first identified in Wuhan,China in December 2019.It was tagged as a pandemic soon by the WHO being a serious public medical conditionworldwide.In spite of the fact that the virus can be diagnosed by qRT-PCR,COVID-19 patients who are affected with pneumonia and other severe complications can only be diagnosed with the help of Chest X-Ray(CXR)and Computed Tomography(CT)images.In this paper,the researchers propose to detect the presence of COVID-19 through images using Best deep learning model with various features.Impressive features like Speeded-Up Robust Features(SURF),Features from Accelerated Segment Test(FAST)and Scale-Invariant Feature Transform(SIFT)are used in the test images to detect the presence of virus.The optimal features are extracted from the images utilizing DeVGGCovNet(Deep optimal VGG16)model through optimal learning rate.This task is accomplished by exceptional mating conduct of Black Widow spiders.In this strategy,cannibalism is incorporated.During this phase,fitness outcomes are rejected and are not satisfied by the proposed model.The results acquired from real case analysis demonstrate the viability of DeVGGCovNet technique in settling true issues using obscure and testing spaces.VGG16 model identifies the imagewhich has a place with which it is dependent on the distinctions in images.The impact of the distinctions on labels during training stage is studied and predicted for test images.The proposed model was compared with existing state-of-the-art models and the results from the proposed model for disarray grid estimates like Sen,Spec,Accuracy and F1 score were promising.