期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Mechanism of Learning and Memory Impairment in Rats Exposed to Arsenic and/or Fluoride Based on Microbiome and Metabolome 被引量:2
1
作者 ZHANG Xiao Li YU Sheng Nan +12 位作者 QU Ruo Di ZHAO Qiu Yi PAN Wei Zhe CHEN Xu Shen ZHANG Qian LIU Yan LI Jia GAO Yi LYU Yi YAN Xiao Yan LI Ben REN Xue Feng QIU Yu Lan 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第3期253-268,共16页
Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, lead... Objective Arsenic(As) and fluoride(F) are two of the most common elements contaminating groundwater resources. A growing number of studies have found that As and F can cause neurotoxicity in infants and children, leading to cognitive, learning, and memory impairments. However, early biomarkers of learning and memory impairment induced by As and/or F remain unclear. In the present study, the mechanisms by which As and/or F cause learning memory impairment are explored at the multi-omics level(microbiome and metabolome).Methods We stablished an SD rats model exposed to arsenic and/or fluoride from intrauterine to adult period.Results Arsenic and/fluoride exposed groups showed reduced neurobehavioral performance and lesions in the hippocampal CA1 region. 16S rRNA gene sequencing revealed that As and/or F exposure significantly altered the composition and diversity of the gut microbiome, featuring the Lachnospiraceae_NK4A136_group, Ruminococcus_1, Prevotellaceae_NK3B31_group, [Eubacterium]_xylanophilum_group. Metabolome analysis showed that As and/or F-induced learning and memory impairment may be related to tryptophan, lipoic acid, glutamate, gamma-aminobutyric acidergic(GABAergic) synapse, and arachidonic acid(AA) metabolism. The gut microbiota, metabolites, and learning memory indicators were significantly correlated.Conclusion Learning memory impairment triggered by As and/or F exposure may be mediated by different gut microbes and their associated metabolites. 展开更多
关键词 ARSENIC FLUORIDE learning and memory impairment MICROBIOME METABOLOME
下载PDF
BI-D1870 Causes the Rats’ Learning and Memory Acquisition Ability Impairment 被引量:2
2
作者 Chaojie Zhang Ke He +1 位作者 Caixia Li Yazhen Shang 《Journal of Biosciences and Medicines》 CAS 2023年第1期82-97,共16页
Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in... Aim: To observe the rats’ learning and memory acquisition ability disturbance induced by BI-D1870. Methods: Male SD rats were randomly divided into control group, solvent control group and BI-D1870 group. The rats in the control group were intraperitoneally injected with saline, while those in the solvent control group were intraperitoneally injected with DMSO + sulfobutyl-β-cyclodextrin solvent, and those in the BI-D1870 group were intraperitoneally injected with BI-D1870. All the rats’ appearance and behavior were daily observed, and body weight was recorded on the day 15, 30, 45, 60, 75 and 82 of BI-D1870 injected. Morris water maze was used to screen the rats’ learning and memory acquisition ability on the day 22 - 25, 52 - 55, and 82 - 85 of training by BI-D1870 treated. The successful rates of the rats’ memory impairment were respectively calculated for three times screening. Results: During the whole experiment, there was no obvious difference in appearance and fur color in all rats. The rats’ agitation began to appear on the day 10th of BI-D1870 given. The agitation rats’ number and rats’ body weight gradually increased along with BI-D1870 treated (P P Conclusion: Intraperitoneal injection of BI-D1870 can induce the rats’ learning and memory acquisition ability disorder. 展开更多
关键词 BI-D1870 learning and memory Acquisition impairment Morris Water Maze RSK Inhibitor
下载PDF
Imperatorin alleviates Aβ-induced spatial learning memory impairment and neuroinflam⁃mation in model mice of Alzheimer disease
3
作者 WAN Hang-juan LUO Li +1 位作者 LIU Xin HE Wei 《中国药理学与毒理学杂志》 CAS 北大核心 2021年第9期642-643,共2页
OBJECTIVE To investigate the effects of imperatorin on the spatial learning memory impairment and neuroinflammation in model mice of Alzheimer disease(AD)induced by intracerebroventricular injection of Aβ1-42.METHODS... OBJECTIVE To investigate the effects of imperatorin on the spatial learning memory impairment and neuroinflammation in model mice of Alzheimer disease(AD)induced by intracerebroventricular injection of Aβ1-42.METHODS Mouse model of AD was established by injection of Aβ1-42 into the lateral ventricles.Im⁃peratorin(2.5 and 5.0 mg·kg-1,daily)was inject⁃ed by intraperitoneally 1 h after intracerebroven⁃tricular injection for 13 d.The effect of imperato⁃rin on the spatial learning and memory impair⁃ment was assessed by eight arm maze tests.The levels of cytokines TNF-α,IL-1β,IL-6,IL-18 and chemokines MCP-1 in mouse cortex and hip⁃pocampus were detected by ELISA.The protein expression of NF-κB P65,TLR4,MyD88,p-P38,p-ERK,and p-JNK were detected by Western blotting.RESULTS As compared with the AD model group,imperatorin treatment significantly attenuated Aβ1-42-induced spatial learning and memory impairment assessed by eight arm maze tests.In addition,imperatorin significantly reduced the levels of cytokines TNF-α,IL-1β,IL-6,IL-18 and chemokines MCP-1 in the cerebral cortex and hippocampus.Meanwhile,Western blotting results showed that imperatorin treat⁃ment significantly down-regulated the protein expression of NF-κB P65,TLR4,MyD88,p-P38,p-ERK,and p-JNK.CONCLUSION Imperatorin has neuroprotective effects in the Aβ1-42 induced AD model mice and its mechanism may be partially associated with the inhibition of inflam⁃matory response in the cortex and hippocampus. 展开更多
关键词 IMPERATORIN Alzheimer disease AΒ1-42 learning and memory impairment inflam⁃matory response
下载PDF
Chlorogenic acid protection of neuronal nitric oxide synthase-positive neurons in the hippocampus of mice with impaired learning and memory
4
作者 Qiuyun Tu Xiangqi Tang Zhiping Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第11期1218-1221,共4页
BACKGROUND: Clinical practice and modern pharmacology have confirmed that chlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxi... BACKGROUND: Clinical practice and modern pharmacology have confirmed that chlorogenic acid can ameliorate learning and memory impairments. OBJECTIVE: To observe the effects of chlorogenic acid on neuronal nitric oxide synthase (nNOS)-positive neurons in the mouse hippocampus, and to investigate the mechanisms underlying the beneficial effects of chlorogenic acid on learning and memory. DESIGN, TIME AND SETTING: The present randomized, controlled, neural cell morphological observation was performed at the Institute of Neurobiology, Central South University between January and May 2005. MATERIALS: Forty-eight female, healthy, adult, Kunming mice were included in this study. Learning and memory impairment was induced with an injection of 0.5 uL kainic acid (0.4 mg/mL) into the hippocampus. METHODS: The mice were randomized into three groups (n = 16): model, control, and chlorogenic acid-treated. At 2 days following learning and memory impairment induction, intragastric administration of physiological saline or chlorogenic acid was performed in the model and chlorogenic acid-treated groups, respectively. The control mice were administered 0.5uL physiological saline into the hippocampus, and 2 days later, they received an intragastfic administration of physiological saline. Each mouse received two intragastric administrations (1 mL solution once) per day, for a total of 35 days. MAIN OUTCOME MEASURES: Detection of changes in hippocampal and cerebral cortical nNOS neurons by immunohistochemistry; determination of spatial learning and memory utilizing the Y-maze device. RESULTS: At day 7 and 35 after intervention, there was no significant difference in the number of nNOS-positive neurons in the cerebral cortex between the model, chlorogenic acid, and control groups (P 〉 0.05). Compared with the control group, the number of nNOS-positive neurons in the hippocampal CA1-4 region was significantly less in the model group (P 〈 0.05). However, the control group was not different from the chlorogenic acid-treated group (P 〉 0.05). At day 7 following intervention, the number of correct responses in the Y-maze test was greater in the chlorogenic acid-treated group than in the model group. CONCLUSION: Chlorogenic acid protects kainic acid-induced injury to nNOS-positive neurons in the hippocampal CA1-4 regions, thereby ameliorating learning and memory impairment. 展开更多
关键词 chlorogenic acid HIPPOCAMPUS learning and memory impairment nitric oxide synthase
下载PDF
Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects
5
作者 Mingcui Luo Yiwen Yi +9 位作者 Songqiang Huang Shiyun Dai Lulu Xie Kexin Liu Shuai Zhang Tao Jiang Tingting Wang Baozhen Yao Hui Wang Dan Xu 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2023年第9期3708-3727,共20页
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons.Here we explored how gestational exposure to dexamethasone,a synthetic glucocorticoid commonly used in clinical practice,... The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons.Here we explored how gestational exposure to dexamethasone,a synthetic glucocorticoid commonly used in clinical practice,has lasting effects on offspring's learning and memory.Adult offspring rats of prenatal dexamethasone exposure(PDE)displayed significant impairments in novelty recognition and spatial learning memory,with some phenotypes maintained transgenerationally.PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations,and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory,but these changes failed to carry over to offspring of F5 and F7 generations.Mechanistically,altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission,which might be related to oocyte-specific high expression and transmission of miR-133a-3p.Together,PDE affects hippocampal excitatory synaptic transmission,with lasting consequences across generations,and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment. 展开更多
关键词 DEXAMETHASONE Early-warning marker Hippocampus Histon acetylation learning and memory impairment MicroRNA Synaptic transmission Transgenerational inheritance
原文传递
Neuroprotective Effects of Electroacupuncture Preventive Treatment in Senescence-Accelerated Mouse Prone 8 Mice 被引量:3
6
作者 HE Xiao-li ZHAO Shi-hui +4 位作者 YOU Wei CAI Yu-ying WANG Yan-yun YE Yong-ming JIA Bao-hui 《Chinese Journal of Integrative Medicine》 SCIE CAS CSCD 2018年第2期133-139,共7页
Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8... Objective: To investigate the preventive treatment effects of electroacupuncture(EA) on cognitive changes and brain damage in senescence-accelerated mouse prone 8(SAMP8) mice. Methods: The 5-month-old male SAMP8 and age-matched homologous normal aging mice(SAMR1) were adopted in this study. EA stimulation at Baihui(GV 20) and Yintang(EX-HN 3) was performed every other day for 12 weeks, 4 weeks as a course. Morris water maze test and Nissl-stained with cresyl violet were used for cognitive impairments evaluation and brain morphometric analysis. Amyloid-β(Aβ) expression in hippocampus and parietal cortex was detected by immunohistochemistry, and apoptosis was observed by TUNEL staining. Results: After 3 courses of EA preventive treatment, the escape latencies of 8-month-old SAMP8 mice in EA group were significantly shortened than those of un-pretreated SAMP8 mice. Compared with SAMR1 mice, extensive neuronal changes were visualized in the CA1 area of hippocampus in SAMP8 mice, while these pathological changes and attenuate cell loss in hippocampal CA1 area of SAMP8 mice markedly reduced after EA preventive treatment. Furthermore, Aβ expression in hippocampus and parietal cortex of SAMP8 mice decreased significantly after EA treatment, and neuronal apoptosis decreased as well. Conclusion: EA preventive treatment at GV 20 and EX-HN 3 might improve cognitive deficits and neuropathological changes in SAMP8 mice, which might be, at least in part, due to the effects of reducing brain neuronal damage, decreasing neuronal apoptosis and inhibiting Aβ-containing aggregates. 展开更多
关键词 electroacupuncture senescence-accelerated mouse prone 8 mice prevention learning and memory cognitive impairment brain damage
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部