期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive learning path recommendation model for examination-oriented education
1
作者 Wang Jian Qiao Kuoyuan +2 位作者 Yuan Yanlei Liu Xiaole Yang Jian 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2022年第4期77-88,共12页
Adaptive learning paths provide individual learning objectives that best match a learner’s characteristics.This is especially helpful when learners need to balance limited available learning time and multiple learnin... Adaptive learning paths provide individual learning objectives that best match a learner’s characteristics.This is especially helpful when learners need to balance limited available learning time and multiple learning objectives.The automatic generation of personalized learning paths to improve learning efficiency has therefore attracted significant interest.However,most current research only focuses on providing learners with adaptive objects and sequences according to their own interests or learning goals given a normal amount of time or ordinary conditions.There is little research that can help learners to obtain the most important knowledge for a test in the shortest time possible,which is a typical scenario in exanimation-oriented education systems.This study aims to solve this problem by introducing a new approach that builds on existing methods.First,the eight properties in Gardner’s multiple intelligence theory are introduced into the present knowledge and learner models to define the relationship between learning objects(LOs)and learners,thereby improving recommendation accuracy rates.Then,a novel adaptive learning path recommendation model is presented where viable knowledge topologies,knowledge bases and the previously-established properties relating to a learner’s ability are combined by Dempster-Shafer(D-S)evidence theory.A series of practical experiments were performed to assess the approach’s adaptability,the appropriateness of the selected evidence and the effectiveness of the recommendations.In the results,it was found that the proposed learning path recommendation model helped learners learn the most important elements and obtain superior test grades when confronted with limited time for learning. 展开更多
关键词 adaptive learning learning path recommendation Dempster-Shaferevidence theory knowledge model learner model
原文传递
KG-based memory recommendation algorithm for learning path
2
作者 Wang Danzhi Xiang Jianxin Cui Yansong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2023年第2期36-48,共13页
In intelligent education,most student-oriented learning path recommendation algorithms are based on either collaborative filtering methods or a 0-1 scoring cognitive diagnosis model.Unfortunately,they fail to provide ... In intelligent education,most student-oriented learning path recommendation algorithms are based on either collaborative filtering methods or a 0-1 scoring cognitive diagnosis model.Unfortunately,they fail to provide a detailed report about the students’mastery of knowledge and skill and explain the recommendation results.In addition,they are unable to offer realistic learning path recommendations based on students’learning progress.Knowledge graph based memory recommendation algorithm(KGM-RA)was proposed to solve these problems.On the one hand,KGM-RA can provide more accurate diagnosis information by continuously fitting the students’knowledge and skill proficiency vector(SKSV)in a multi-level scoring cognitive diagnosis model.On the other hand,it also proposes the forgetting recall degree(FRD)according to the statistical results of the human forgetting phenomenon.It also calculates closeness centrality in the knowledge graph to achieve the recommended recall effect consistent with the human forgetting phenomenon.Experiments show that the KGM-RA can obtain the actual learning path recommendations for students,provides the adjustable ability of FRD,and has better reliability and interpretability. 展开更多
关键词 learning path recommendation knowledge graph cognitive diagnosis human forgetting phenomenon
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部