Interactive learning tools can facilitate the learning process and increase student engagement,especially tools such as computer programs that are designed for human-computer interaction.Thus,this paper aims to help s...Interactive learning tools can facilitate the learning process and increase student engagement,especially tools such as computer programs that are designed for human-computer interaction.Thus,this paper aims to help students learn five different methods for solving nonlinear equations using an interactive learning tool designed with common principles such as feedback,visibility,affordance,consistency,and constraints.It also compares these methods by the number of iterations and time required to display the result.This study helps students learn these methods using interactive learning tools instead of relying on traditional teaching methods.The tool is implemented using the MATLAB app and is evaluated through usability testing with two groups of users that are categorized by their level of experience with root-finding.Users with no knowledge in root-finding confirmed that they understood the root-finding concept when interacting with the designed tool.The positive results of the user evaluation showed that the tool can be recommended to other users.展开更多
As the 21st century brings in a revolutionary change in the way students study at schools and universities, technology continues to play a crucial role in helping students achieve more conceptual and practical knowled...As the 21st century brings in a revolutionary change in the way students study at schools and universities, technology continues to play a crucial role in helping students achieve more conceptual and practical knowledge of topics taught in classrooms. Students with special needs too are now able to study in a general classroom setting, access relevant technologies and use them for higher cognitive development, helping them integrate with their surroundings. However, existing literature shows that though multiple learning tools exist that do enhance learning in special needs students, they either cater to specific areas of development such as Mathematics and English, or that are targeted towards a specified category of studentswith special needs such as autism and cerebral palsy. Furthermore, despite multiple laws and regulations supporting the right to education launched by the UAE (United Arab Emirates) government for special needs students, there seems to exist a need to provide classrooms across the country with educational applications that have a universal approach particularly in the UAE in order to include students with almost any special needs. This paper looks closely at the existing literature and highlights this gap, especially in the UAE and proposes to develop such a tool based on existing learning concepts.展开更多
Our research was focused on the identification of features, which was essential for educational digital products and the determination of their quality. The introductory analytical part of our research is focused on t...Our research was focused on the identification of features, which was essential for educational digital products and the determination of their quality. The introductory analytical part of our research is focused on the analysis of existing sources of information related to the problems of research, production, appropriate use and evaluation of educational software environments. Consequently, we have divided the existing software products into three basic groups according to our main distinguishing feature. Second part of our paper is focused on various aspects, which are to be considered when assessing the quality of software solutions. The final part contains the presentation of results of our findings related to the most important features expected and required from digital learning tools by professional experts and specialists in given field.展开更多
Background:Nonalcoholic fatty liver disease(NAFLD)is a public health challenge and significant cause of morbidity and mortality worldwide.Early identification is crucial for disease intervention.We recently proposed a...Background:Nonalcoholic fatty liver disease(NAFLD)is a public health challenge and significant cause of morbidity and mortality worldwide.Early identification is crucial for disease intervention.We recently proposed a nomogram-based NAFLD prediction model from a large population cohort.We aimed to explore machine learning tools in predicting NAFLD.Methods:A retrospective cross-sectional study was performed on 15315 Chinese subjects(10373 training and 4942 testing sets).Selected clinical and biochemical factors were evaluated by different types of machine learning algorithms to develop and validate seven predictive models.Nine evaluation indicators including area under the receiver operating characteristic curve(AUROC),area under the precision-recall curve(AUPRC),accuracy,positive predictive value,sensitivity,F1 score,Matthews correlation coefficient(MCC),specificity and negative prognostic value were applied to compare the performance among the models.The selected clinical and biochemical factors were ranked according to the importance in prediction ability.Results:Totally 4018/10373(38.74%)and 1860/4942(37.64%)subjects had ultrasound-proven NAFLD in the training and testing sets,respectively.Seven machine learning based models were developed and demonstrated good performance in predicting NAFLD.Among these models,the XGBoost model revealed the highest AUROC(0.873),AUPRC(0.810),accuracy(0.795),positive predictive value(0.806),F1 score(0.695),MCC(0.557),specificity(0.909),demonstrating the best prediction ability among the built models.Body mass index was the most valuable indicator to predict NAFLD according to the feature ranking scores.Conclusions:The XGBoost model has the best overall prediction ability for diagnosing NAFLD.The novel machine learning tools provide considerable beneficial potential in NAFLD screening.展开更多
This paper outlines a framework to use computer and natural language techniques for various levels of learners to learn foreign languages in Computer-based Learning environment.We propose some ideas for using the comp...This paper outlines a framework to use computer and natural language techniques for various levels of learners to learn foreign languages in Computer-based Learning environment.We propose some ideas for using the computer as a practical tool for learning foreign language where the most of courseware is generated automatically.We then describe how to build Computer-based Learning tools,discuss its effectiveness,and conclude with some possibilities using on-line resources.展开更多
Background/Need for innovation: Undergraduate students in Otolaryngology are on the lookout for easy modes of learning which can help them understand concepts better as well as score more in examinations. A need was h...Background/Need for innovation: Undergraduate students in Otolaryngology are on the lookout for easy modes of learning which can help them understand concepts better as well as score more in examinations. A need was hence felt to introduce a new learning resource to supplement traditional teaching-learning methods. Methods: Digital, case based self–study modules were prepared using all open source technology and validated by experts in the specialty. The modules were uploaded on a website specifically created for the purpose. They were pilot tested on twenty consenting third year undergraduate (MBBS) students using a crossover design. Post test comprising of multiple choice questions was administered to the students after a period of two weeks. Feedback was obtained from faculty and students. Results: Test scores were found to be significantly higher amongst students who used the learning modules as a supplement to regular bedside teaching (p < 0.001;Wilcoxon signed rank test). Majority of students agreed that the modules helped them gain confidence during internal assessment examinations and would help revision. Conclusions: Online, case based, self-study modules helped students to perform better when used as a supplement to traditional teaching methods. Students agreed that it enabled easy understanding of subject and helped them gain confidence.展开更多
Historically viewed as a niche economic sector, gaming is now projected to exceed a global annual revenue of $218.7 billion in 2024, taking advantage of recent Artificial Intelligence (AI) advances. In recent ...Historically viewed as a niche economic sector, gaming is now projected to exceed a global annual revenue of $218.7 billion in 2024, taking advantage of recent Artificial Intelligence (AI) advances. In recent years, specific AI techniques namely;Machine Learning (ML) and Reinforcement Learning (RL), have seen impressive progress and popularity. Techniques developed within these two fields are now able to analyze and learn from gameplay experiences enabling more interactive, immersive, and engaging games. While the number of ML and RL algorithms is growing, their implementations through frameworks and toolkits are also extensive too. Moreover, the game design and development community lacks a framework for informed evaluation of available RL toolkits. In this paper, we present a comprehensive survey of RL toolkits for games using a qualitative evaluation methodology.展开更多
<span style="font-family:Verdana;">Students face difficulties in programming languages learning (PLL) which encourages many scholars to investigate the factors behind that. Although there a number of p...<span style="font-family:Verdana;">Students face difficulties in programming languages learning (PLL) which encourages many scholars to investigate the factors behind that. Although there a number of positive and negative factors found to be effective in PLL procedure, utilising online tools in PLL were recognized as a positive recommended means. This motivates many researchers to provide solutions and proposals which result in a number of choices and options. However, categorising those efforts and showing what has been done, would provide a better and clear image for future studies. Therefore, this paper aims to conduct a systematic literature review to show what studies have been done and then categorise them based on the type of online tools and the aims of the research. The study follows Kitchenham and Charters guidelines for writing SLR (Systematic Literature Review). The search result reached 1390 publications between 2013-09/2018. After the filtration which has been done through selected criteria, 160 publications were found to be adequate to answer the review questions. The main results of this systematic review are categorizing the aims of the studies in online PLL tools, classifying the tools and finding the current trends of the online PLL tools.</span>展开更多
With the breakthrough of AlphaGo,deep reinforcement learning has become a recognized technique for solving sequential decision-making problems.Despite its reputation,data inefficiency caused by its trial and error lea...With the breakthrough of AlphaGo,deep reinforcement learning has become a recognized technique for solving sequential decision-making problems.Despite its reputation,data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning difficult to apply in a wide range of areas.Many methods have been developed for sample efficient deep reinforcement learning,such as environment modelling,experience transfer,and distributed modifications,among which distributed deep reinforcement learning has shown its potential in various applications,such as human-computer gaming and intelligent transportation.In this paper,we conclude the state of this exciting field,by comparing the classical distributed deep reinforcement learning methods and studying important components to achieve efficient distributed learning,covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning.Furthermore,we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions.By analysing their strengths and weaknesses,a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released,which is further validated on Wargame,a complex environment,showing the usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games.Finally,we try to point out challenges and future trends,hoping that this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.展开更多
Machine learning(ML)is one of the key technologies for next-generation breeding,and“big data”is the cornerstone for development of ML algorithms that are applicable to crop breeding practices.Currently,there is a sh...Machine learning(ML)is one of the key technologies for next-generation breeding,and“big data”is the cornerstone for development of ML algorithms that are applicable to crop breeding practices.Currently,there is a shortage of databases containing phenotype data and corresponding genomic data,i.e.,genome-to-phenotype(G2P)paired data,that can be used in the development of ML algorithms for breeding.To fill this gap,we constructed a user-friendly database named the BreedingAIDB(http://ibi.zju.edu.cn/BreedingAIDB)to provide breeders and ML experts with easily accessible G2P paired data for crops,as well as ML tools.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the s...The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.展开更多
In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerabi...In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection.展开更多
The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model...The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model for major postoperative complications within 30 days of surgery in Crohn’s disease(CD)patients.Em-ploying a random forest analysis and Shapley Additive Explanations,the study prioritizes factors such as preoperative nutritional status,operative time,and CD activity index.Despite the retrospective design’s limitations,the model’s robu-stness,with area under the curve values surpassing 0.8,highlights its clinical potential.The findings align with literature supporting preoperative nutritional therapy in inflammatory bowel diseases,emphasizing the importance of compre-hensive assessment and optimization.While a significant advancement,further research is crucial for refining preoperative strategies in CD patients.展开更多
This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combin...This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching.展开更多
Deep Learning(DL)is a subfield of machine learning that significantly impacts extracting new knowledge.By using DL,the extraction of advanced data representations and knowledge can be made possible.Highly effective DL...Deep Learning(DL)is a subfield of machine learning that significantly impacts extracting new knowledge.By using DL,the extraction of advanced data representations and knowledge can be made possible.Highly effective DL techniques help to find more hidden knowledge.Deep learning has a promising future due to its great performance and accuracy.We need to understand the fundamentals and the state‐of‐the‐art of DL to leverage it effectively.A survey on DL ways,advantages,drawbacks,architectures,and methods to have a straightforward and clear understanding of it from different views is explained in the paper.Moreover,the existing related methods are compared with each other,and the application of DL is described in some applications,such as medical image analysis,handwriting recognition,and so on.展开更多
Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning technique...Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease.展开更多
BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective pr...BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.展开更多
Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However...Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.展开更多
The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceu...The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations.展开更多
文摘Interactive learning tools can facilitate the learning process and increase student engagement,especially tools such as computer programs that are designed for human-computer interaction.Thus,this paper aims to help students learn five different methods for solving nonlinear equations using an interactive learning tool designed with common principles such as feedback,visibility,affordance,consistency,and constraints.It also compares these methods by the number of iterations and time required to display the result.This study helps students learn these methods using interactive learning tools instead of relying on traditional teaching methods.The tool is implemented using the MATLAB app and is evaluated through usability testing with two groups of users that are categorized by their level of experience with root-finding.Users with no knowledge in root-finding confirmed that they understood the root-finding concept when interacting with the designed tool.The positive results of the user evaluation showed that the tool can be recommended to other users.
文摘As the 21st century brings in a revolutionary change in the way students study at schools and universities, technology continues to play a crucial role in helping students achieve more conceptual and practical knowledge of topics taught in classrooms. Students with special needs too are now able to study in a general classroom setting, access relevant technologies and use them for higher cognitive development, helping them integrate with their surroundings. However, existing literature shows that though multiple learning tools exist that do enhance learning in special needs students, they either cater to specific areas of development such as Mathematics and English, or that are targeted towards a specified category of studentswith special needs such as autism and cerebral palsy. Furthermore, despite multiple laws and regulations supporting the right to education launched by the UAE (United Arab Emirates) government for special needs students, there seems to exist a need to provide classrooms across the country with educational applications that have a universal approach particularly in the UAE in order to include students with almost any special needs. This paper looks closely at the existing literature and highlights this gap, especially in the UAE and proposes to develop such a tool based on existing learning concepts.
基金supported by the Slovak Research and Development Agency under the contract No.APVV-0266-11.
文摘Our research was focused on the identification of features, which was essential for educational digital products and the determination of their quality. The introductory analytical part of our research is focused on the analysis of existing sources of information related to the problems of research, production, appropriate use and evaluation of educational software environments. Consequently, we have divided the existing software products into three basic groups according to our main distinguishing feature. Second part of our paper is focused on various aspects, which are to be considered when assessing the quality of software solutions. The final part contains the presentation of results of our findings related to the most important features expected and required from digital learning tools by professional experts and specialists in given field.
基金supported by grants from the National Natural Science Foundation of China(81970543 and 81570591)Zhejiang Provincial Medical&Hygienic Science and Technology Project of China(2018KY385)Zhejiang Provincial Natural Science Foundation of China(LY20H160023)。
文摘Background:Nonalcoholic fatty liver disease(NAFLD)is a public health challenge and significant cause of morbidity and mortality worldwide.Early identification is crucial for disease intervention.We recently proposed a nomogram-based NAFLD prediction model from a large population cohort.We aimed to explore machine learning tools in predicting NAFLD.Methods:A retrospective cross-sectional study was performed on 15315 Chinese subjects(10373 training and 4942 testing sets).Selected clinical and biochemical factors were evaluated by different types of machine learning algorithms to develop and validate seven predictive models.Nine evaluation indicators including area under the receiver operating characteristic curve(AUROC),area under the precision-recall curve(AUPRC),accuracy,positive predictive value,sensitivity,F1 score,Matthews correlation coefficient(MCC),specificity and negative prognostic value were applied to compare the performance among the models.The selected clinical and biochemical factors were ranked according to the importance in prediction ability.Results:Totally 4018/10373(38.74%)and 1860/4942(37.64%)subjects had ultrasound-proven NAFLD in the training and testing sets,respectively.Seven machine learning based models were developed and demonstrated good performance in predicting NAFLD.Among these models,the XGBoost model revealed the highest AUROC(0.873),AUPRC(0.810),accuracy(0.795),positive predictive value(0.806),F1 score(0.695),MCC(0.557),specificity(0.909),demonstrating the best prediction ability among the built models.Body mass index was the most valuable indicator to predict NAFLD according to the feature ranking scores.Conclusions:The XGBoost model has the best overall prediction ability for diagnosing NAFLD.The novel machine learning tools provide considerable beneficial potential in NAFLD screening.
文摘This paper outlines a framework to use computer and natural language techniques for various levels of learners to learn foreign languages in Computer-based Learning environment.We propose some ideas for using the computer as a practical tool for learning foreign language where the most of courseware is generated automatically.We then describe how to build Computer-based Learning tools,discuss its effectiveness,and conclude with some possibilities using on-line resources.
文摘Background/Need for innovation: Undergraduate students in Otolaryngology are on the lookout for easy modes of learning which can help them understand concepts better as well as score more in examinations. A need was hence felt to introduce a new learning resource to supplement traditional teaching-learning methods. Methods: Digital, case based self–study modules were prepared using all open source technology and validated by experts in the specialty. The modules were uploaded on a website specifically created for the purpose. They were pilot tested on twenty consenting third year undergraduate (MBBS) students using a crossover design. Post test comprising of multiple choice questions was administered to the students after a period of two weeks. Feedback was obtained from faculty and students. Results: Test scores were found to be significantly higher amongst students who used the learning modules as a supplement to regular bedside teaching (p < 0.001;Wilcoxon signed rank test). Majority of students agreed that the modules helped them gain confidence during internal assessment examinations and would help revision. Conclusions: Online, case based, self-study modules helped students to perform better when used as a supplement to traditional teaching methods. Students agreed that it enabled easy understanding of subject and helped them gain confidence.
文摘Historically viewed as a niche economic sector, gaming is now projected to exceed a global annual revenue of $218.7 billion in 2024, taking advantage of recent Artificial Intelligence (AI) advances. In recent years, specific AI techniques namely;Machine Learning (ML) and Reinforcement Learning (RL), have seen impressive progress and popularity. Techniques developed within these two fields are now able to analyze and learn from gameplay experiences enabling more interactive, immersive, and engaging games. While the number of ML and RL algorithms is growing, their implementations through frameworks and toolkits are also extensive too. Moreover, the game design and development community lacks a framework for informed evaluation of available RL toolkits. In this paper, we present a comprehensive survey of RL toolkits for games using a qualitative evaluation methodology.
文摘<span style="font-family:Verdana;">Students face difficulties in programming languages learning (PLL) which encourages many scholars to investigate the factors behind that. Although there a number of positive and negative factors found to be effective in PLL procedure, utilising online tools in PLL were recognized as a positive recommended means. This motivates many researchers to provide solutions and proposals which result in a number of choices and options. However, categorising those efforts and showing what has been done, would provide a better and clear image for future studies. Therefore, this paper aims to conduct a systematic literature review to show what studies have been done and then categorise them based on the type of online tools and the aims of the research. The study follows Kitchenham and Charters guidelines for writing SLR (Systematic Literature Review). The search result reached 1390 publications between 2013-09/2018. After the filtration which has been done through selected criteria, 160 publications were found to be adequate to answer the review questions. The main results of this systematic review are categorizing the aims of the studies in online PLL tools, classifying the tools and finding the current trends of the online PLL tools.</span>
基金supported by Open Fund/Postdoctoral Fund of the Laboratory of Cognition and Decision Intelligence for Complex Systems,Institute of Automation,Chinese Academy of Sciences,China(No.CASIA-KFKTXDA27040809).
文摘With the breakthrough of AlphaGo,deep reinforcement learning has become a recognized technique for solving sequential decision-making problems.Despite its reputation,data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning difficult to apply in a wide range of areas.Many methods have been developed for sample efficient deep reinforcement learning,such as environment modelling,experience transfer,and distributed modifications,among which distributed deep reinforcement learning has shown its potential in various applications,such as human-computer gaming and intelligent transportation.In this paper,we conclude the state of this exciting field,by comparing the classical distributed deep reinforcement learning methods and studying important components to achieve efficient distributed learning,covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning.Furthermore,we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions.By analysing their strengths and weaknesses,a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released,which is further validated on Wargame,a complex environment,showing the usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games.Finally,we try to point out challenges and future trends,hoping that this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
基金supported by the STI2030-Major Projects(2023ZD04076)the Hainan Province Science and Technology Special Fund(ZDYF2022XDNY271).
文摘Machine learning(ML)is one of the key technologies for next-generation breeding,and“big data”is the cornerstone for development of ML algorithms that are applicable to crop breeding practices.Currently,there is a shortage of databases containing phenotype data and corresponding genomic data,i.e.,genome-to-phenotype(G2P)paired data,that can be used in the development of ML algorithms for breeding.To fill this gap,we constructed a user-friendly database named the BreedingAIDB(http://ibi.zju.edu.cn/BreedingAIDB)to provide breeders and ML experts with easily accessible G2P paired data for crops,as well as ML tools.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金the National Key Research and Development Program of China(No.2020YFB1713500)the Natural Science Basic Research Program of Shaanxi(Grant No.2023JCYB289)+1 种基金the National Natural Science Foundation of China(Grant No.52175112)the Fundamental Research Funds for the Central Universities(Grant No.ZYTS23102).
文摘The wear of metal cutting tools will progressively rise as the cutting time goes on. Wearing heavily on the toolwill generate significant noise and vibration, negatively impacting the accuracy of the forming and the surfaceintegrity of the workpiece. Hence, during the cutting process, it is imperative to continually monitor the tool wearstate andpromptly replace anyheavilyworn tools toguarantee thequality of the cutting.The conventional tool wearmonitoring models, which are based on machine learning, are specifically built for the intended cutting conditions.However, these models require retraining when the cutting conditions undergo any changes. This method has noapplication value if the cutting conditions frequently change. This manuscript proposes a method for monitoringtool wear basedonunsuperviseddeep transfer learning. Due to the similarity of the tool wear process under varyingworking conditions, a tool wear recognitionmodel that can adapt to both current and previous working conditionshas been developed by utilizing cutting monitoring data from history. To extract and classify cutting vibrationsignals, the unsupervised deep transfer learning network comprises a one-dimensional (1D) convolutional neuralnetwork (CNN) with a multi-layer perceptron (MLP). To achieve distribution alignment of deep features throughthe maximum mean discrepancy algorithm, a domain adaptive layer is embedded in the penultimate layer of thenetwork. A platformformonitoring tool wear during endmilling has been constructed. The proposedmethod wasverified through the execution of a full life test of end milling under multiple working conditions with a Cr12MoVsteel workpiece. Our experiments demonstrate that the transfer learning model maintains a classification accuracyof over 80%. In comparisonwith the most advanced tool wearmonitoring methods, the presentedmodel guaranteessuperior performance in the target domains.
基金funded by the Major PublicWelfare Special Fund of Henan Province(No.201300210200)the Major Science and Technology Research Special Fund of Henan Province(No.221100210400).
文摘In recent years,the number of smart contracts deployed on blockchain has exploded.However,the issue of vulnerability has caused incalculable losses.Due to the irreversible and immutability of smart contracts,vulnerability detection has become particularly important.With the popular use of neural network model,there has been a growing utilization of deep learning-based methods and tools for the identification of vulnerabilities within smart contracts.This paper commences by providing a succinct overview of prevalent categories of vulnerabilities found in smart contracts.Subsequently,it categorizes and presents an overview of contemporary deep learning-based tools developed for smart contract detection.These tools are categorized based on their open-source status,the data format and the type of feature extraction they employ.Then we conduct a comprehensive comparative analysis of these tools,selecting representative tools for experimental validation and comparing them with traditional tools in terms of detection coverage and accuracy.Finally,Based on the insights gained from the experimental results and the current state of research in the field of smart contract vulnerability detection tools,we suppose to provide a reference standard for developers of contract vulnerability detection tools.Meanwhile,forward-looking research directions are also proposed for deep learning-based smart contract vulnerability detection.
文摘The recent study,“Predicting short-term major postoperative complications in intestinal resection for Crohn’s disease:A machine learning-based study”invest-igated the predictive efficacy of a machine learning model for major postoperative complications within 30 days of surgery in Crohn’s disease(CD)patients.Em-ploying a random forest analysis and Shapley Additive Explanations,the study prioritizes factors such as preoperative nutritional status,operative time,and CD activity index.Despite the retrospective design’s limitations,the model’s robu-stness,with area under the curve values surpassing 0.8,highlights its clinical potential.The findings align with literature supporting preoperative nutritional therapy in inflammatory bowel diseases,emphasizing the importance of compre-hensive assessment and optimization.While a significant advancement,further research is crucial for refining preoperative strategies in CD patients.
文摘This study investigates university English teachers’acceptance and willingness to use learning management system(LMS)data analysis tools in their teaching practices.The research employs a mixed-method approach,combining quantitative surveys and qualitative interviews to understand teachers’perceptions and attitudes,and the factors influencing their adoption of LMS data analysis tools.The findings reveal that perceived usefulness,perceived ease of use,technical literacy,organizational support,and data privacy concerns significantly impact teachers’willingness to use these tools.Based on these insights,the study offers practical recommendations for educational institutions to enhance the effective adoption of LMS data analysis tools in English language teaching.
文摘Deep Learning(DL)is a subfield of machine learning that significantly impacts extracting new knowledge.By using DL,the extraction of advanced data representations and knowledge can be made possible.Highly effective DL techniques help to find more hidden knowledge.Deep learning has a promising future due to its great performance and accuracy.We need to understand the fundamentals and the state‐of‐the‐art of DL to leverage it effectively.A survey on DL ways,advantages,drawbacks,architectures,and methods to have a straightforward and clear understanding of it from different views is explained in the paper.Moreover,the existing related methods are compared with each other,and the application of DL is described in some applications,such as medical image analysis,handwriting recognition,and so on.
文摘Stroke is a leading cause of disability and mortality worldwide,necessitating the development of advanced technologies to improve its diagnosis,treatment,and patient outcomes.In recent years,machine learning techniques have emerged as promising tools in stroke medicine,enabling efficient analysis of large-scale datasets and facilitating personalized and precision medicine approaches.This abstract provides a comprehensive overview of machine learning’s applications,challenges,and future directions in stroke medicine.Recently introduced machine learning algorithms have been extensively employed in all the fields of stroke medicine.Machine learning models have demonstrated remarkable accuracy in imaging analysis,diagnosing stroke subtypes,risk stratifications,guiding medical treatment,and predicting patient prognosis.Despite the tremendous potential of machine learning in stroke medicine,several challenges must be addressed.These include the need for standardized and interoperable data collection,robust model validation and generalization,and the ethical considerations surrounding privacy and bias.In addition,integrating machine learning models into clinical workflows and establishing regulatory frameworks are critical for ensuring their widespread adoption and impact in routine stroke care.Machine learning promises to revolutionize stroke medicine by enabling precise diagnosis,tailored treatment selection,and improved prognostication.Continued research and collaboration among clinicians,researchers,and technologists are essential for overcoming challenges and realizing the full potential of machine learning in stroke care,ultimately leading to enhanced patient outcomes and quality of life.This review aims to summarize all the current implications of machine learning in stroke diagnosis,treatment,and prognostic evaluation.At the same time,another purpose of this paper is to explore all the future perspectives these techniques can provide in combating this disabling disease.
基金Supported by Science and Technology Support Program of Qiandongnan Prefecture,No.Qiandongnan Sci-Tech Support[2021]12Guizhou Province High-Level Innovative Talent Training Program,No.Qiannan Thousand Talents[2022]201701.
文摘BACKGROUND Intensive care unit-acquired weakness(ICU-AW)is a common complication that significantly impacts the patient's recovery process,even leading to adverse outcomes.Currently,there is a lack of effective preventive measures.AIM To identify significant risk factors for ICU-AW through iterative machine learning techniques and offer recommendations for its prevention and treatment.METHODS Patients were categorized into ICU-AW and non-ICU-AW groups on the 14th day post-ICU admission.Relevant data from the initial 14 d of ICU stay,such as age,comorbidities,sedative dosage,vasopressor dosage,duration of mechanical ventilation,length of ICU stay,and rehabilitation therapy,were gathered.The relationships between these variables and ICU-AW were examined.Utilizing iterative machine learning techniques,a multilayer perceptron neural network model was developed,and its predictive performance for ICU-AW was assessed using the receiver operating characteristic curve.RESULTS Within the ICU-AW group,age,duration of mechanical ventilation,lorazepam dosage,adrenaline dosage,and length of ICU stay were significantly higher than in the non-ICU-AW group.Additionally,sepsis,multiple organ dysfunction syndrome,hypoalbuminemia,acute heart failure,respiratory failure,acute kidney injury,anemia,stress-related gastrointestinal bleeding,shock,hypertension,coronary artery disease,malignant tumors,and rehabilitation therapy ratios were significantly higher in the ICU-AW group,demonstrating statistical significance.The most influential factors contributing to ICU-AW were identified as the length of ICU stay(100.0%)and the duration of mechanical ventilation(54.9%).The neural network model predicted ICU-AW with an area under the curve of 0.941,sensitivity of 92.2%,and specificity of 82.7%.CONCLUSION The main factors influencing ICU-AW are the length of ICU stay and the duration of mechanical ventilation.A primary preventive strategy,when feasible,involves minimizing both ICU stay and mechanical ventilation duration.
基金financially supported by the National Natural Science Foundation of China,No.81303115,81774042 (both to XC)the Pearl River S&T Nova Program of Guangzhou,No.201806010025 (to XC)+3 种基金the Specialty Program of Guangdong Province Hospital of Chinese Medicine of China,No.YN2018ZD07 (to XC)the Natural Science Foundatior of Guangdong Province of China,No.2023A1515012174 (to JL)the Science and Technology Program of Guangzhou of China,No.20210201 0268 (to XC),20210201 0339 (to JS)Guangdong Provincial Key Laboratory of Research on Emergency in TCM,Nos.2018-75,2019-140 (to JS)
文摘Vascular etiology is the second most prevalent cause of cognitive impairment globally.Endothelin-1,which is produced and secreted by endothelial cells and astrocytes,is implicated in the pathogenesis of stroke.However,the way in which changes in astrocytic endothelin-1 lead to poststroke cognitive deficits following transient middle cerebral artery occlusion is not well understood.Here,using mice in which astrocytic endothelin-1 was overexpressed,we found that the selective overexpression of endothelin-1 by astrocytic cells led to ischemic stroke-related dementia(1 hour of ischemia;7 days,28 days,or 3 months of reperfusion).We also revealed that astrocytic endothelin-1 overexpression contributed to the role of neural stem cell proliferation but impaired neurogenesis in the dentate gyrus of the hippocampus after middle cerebral artery occlusion.Comprehensive proteome profiles and western blot analysis confirmed that levels of glial fibrillary acidic protein and peroxiredoxin 6,which were differentially expressed in the brain,were significantly increased in mice with astrocytic endothelin-1 overexpression in comparison with wild-type mice 28 days after ischemic stroke.Moreover,the levels of the enriched differentially expressed proteins were closely related to lipid metabolism,as indicated by Kyoto Encyclopedia of Genes and Genomes pathway analysis.Liquid chromatography-mass spectrometry nontargeted metabolite profiling of brain tissues showed that astrocytic endothelin-1 overexpression altered lipid metabolism products such as glycerol phosphatidylcholine,sphingomyelin,and phosphatidic acid.Overall,this study demonstrates that astrocytic endothelin-1 overexpression can impair hippocampal neurogenesis and that it is correlated with lipid metabolism in poststroke cognitive dysfunction.
基金the financial support from the National Natural Science Foundation of China(22278070,21978047,21776046)。
文摘The high throughput prediction of the thermodynamic phase behavior of active pharmaceutical ingredients(APIs)with pharmaceutically relevant excipients remains a major scientific challenge in the screening of pharmaceutical formulations.In this work,a developed machine-learning model efficiently predicts the solubility of APIs in polymers by learning the phase equilibrium principle and using a few molecular descriptors.Under the few-shot learning framework,thermodynamic theory(perturbed-chain statistical associating fluid theory)was used for data augmentation,and computational chemistry was applied for molecular descriptors'screening.The results showed that the developed machine-learning model can predict the API-polymer phase diagram accurately,broaden the solubility data of APIs in polymers,and reproduce the relationship between API solubility and the interaction mechanisms between API and polymer successfully,which provided efficient guidance for the development of pharmaceutical formulations.