Multiple-Instance Learning (MIL) is used to predict the unlabeled bags' label by learning the labeled positive training bags and negative training bags.Each bag is made up of several unlabeled instances.A bag is la...Multiple-Instance Learning (MIL) is used to predict the unlabeled bags' label by learning the labeled positive training bags and negative training bags.Each bag is made up of several unlabeled instances.A bag is labeled positive if at least one of its instances is positive,otherwise negative.Existing multiple-instance learning methods with instance selection ignore the representative degree of the selected instances.For example,if an instance has many similar instances with the same label around it,the instance should be more representative than others.Based on this idea,in this paper,a multiple-instance learning with instance selection via constructive covering algorithm (MilCa) is proposed.In MilCa,we firstly use maximal Hausdorff to select some initial positive instances from positive bags,then use a Constructive Covering Algorithm (CCA) to restructure the structure of the original instances of negative bags.Then an inverse testing process is employed to exclude the false positive instances from positive bags and to select the high representative degree instances ordered by the number of covered instances from training bags.Finally,a similarity measure function is used to convert the training bag into a single sample and CCA is again used to classification for the converted samples.Experimental results on synthetic data and standard benchmark datasets demonstrate that MilCa can decrease the number of the selected instances and it is competitive with the state-of-the-art MIL algorithms.展开更多
In today's world of excessive development in technologies, sustainability and adaptability of computer applications is a challenge, and future prediction became significant. Therefore, strong artificial intelligence ...In today's world of excessive development in technologies, sustainability and adaptability of computer applications is a challenge, and future prediction became significant. Therefore, strong artificial intelligence (AI) became important and, thus, statistical machine learning (ML) methods were applied to serve it. These methods are very difficult to understand, and they predict the future without showing how. However, understanding of how machines make their decision is also important, especially in information system domain. Consequently, incremental covering algorithms (CA) can be used to produce simple rules to make difficult decisions. Nevertheless, even though using simple CA as the base of strong AI agent would be a novel idea but doing so with the methods available in CA is not possible. It was found that having to accurately update the discovered rules based on new information in CA is a challenge and needs extra attention. In specific, incomplete data with missing classes is inappropriately considered, whereby the speed and data size was also a concern, and future none existing classes were neglected. Consequently, this paper will introduce a novel algorithm called RULES-IT, in order to solve the problems of incremental CA and introduce it into strong AI. This algorithm is the first incremental algorithm in its family, and CA as a whole, that transfer rules of different domains to improve the performance, generalize the induction, take advantage of past experience in different domain, and make the learner more intelligent. It is also the first to introduce intelligent aspectsinto incremental CA, including consciousness, subjective emotions, awareness, and adjustment. Furthermore, all decisions made can be understood due to the simple representation of repository as rules. Finally, RULES-IT performance will be benchmarked with six different methods and compared with its predecessors to see the effect of transferring rules in the learning process, and to prove how RULES-IT actually solved the shortcoming of current incremental CA in addition to its improvement in the total performance.展开更多
In this paper, a new covering algorithm called FCV1 is presented. FCV1 comprises two algorithms, one of which is able to fast search for a partial rule and exclude the larg portion of negative examples, the other algo...In this paper, a new covering algorithm called FCV1 is presented. FCV1 comprises two algorithms, one of which is able to fast search for a partial rule and exclude the larg portion of negative examples, the other algorithm incorporates the more optimized greedy set-covering algorithm, and runs on a small portion of training examples. Hence,the training process of FCV1 is much faster than that of AQ15.展开更多
基金supported by the National Natural Science Foundation of China (No. 61175046)the Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province (No. KJ2013A016)+1 种基金the Outstanding Young Talents in Higher Education Institutions of Anhui Province (No. 2011SQRL146)the Recruitment Project of Anhui University for Academic and Technology Leader
文摘Multiple-Instance Learning (MIL) is used to predict the unlabeled bags' label by learning the labeled positive training bags and negative training bags.Each bag is made up of several unlabeled instances.A bag is labeled positive if at least one of its instances is positive,otherwise negative.Existing multiple-instance learning methods with instance selection ignore the representative degree of the selected instances.For example,if an instance has many similar instances with the same label around it,the instance should be more representative than others.Based on this idea,in this paper,a multiple-instance learning with instance selection via constructive covering algorithm (MilCa) is proposed.In MilCa,we firstly use maximal Hausdorff to select some initial positive instances from positive bags,then use a Constructive Covering Algorithm (CCA) to restructure the structure of the original instances of negative bags.Then an inverse testing process is employed to exclude the false positive instances from positive bags and to select the high representative degree instances ordered by the number of covered instances from training bags.Finally,a similarity measure function is used to convert the training bag into a single sample and CCA is again used to classification for the converted samples.Experimental results on synthetic data and standard benchmark datasets demonstrate that MilCa can decrease the number of the selected instances and it is competitive with the state-of-the-art MIL algorithms.
文摘In today's world of excessive development in technologies, sustainability and adaptability of computer applications is a challenge, and future prediction became significant. Therefore, strong artificial intelligence (AI) became important and, thus, statistical machine learning (ML) methods were applied to serve it. These methods are very difficult to understand, and they predict the future without showing how. However, understanding of how machines make their decision is also important, especially in information system domain. Consequently, incremental covering algorithms (CA) can be used to produce simple rules to make difficult decisions. Nevertheless, even though using simple CA as the base of strong AI agent would be a novel idea but doing so with the methods available in CA is not possible. It was found that having to accurately update the discovered rules based on new information in CA is a challenge and needs extra attention. In specific, incomplete data with missing classes is inappropriately considered, whereby the speed and data size was also a concern, and future none existing classes were neglected. Consequently, this paper will introduce a novel algorithm called RULES-IT, in order to solve the problems of incremental CA and introduce it into strong AI. This algorithm is the first incremental algorithm in its family, and CA as a whole, that transfer rules of different domains to improve the performance, generalize the induction, take advantage of past experience in different domain, and make the learner more intelligent. It is also the first to introduce intelligent aspectsinto incremental CA, including consciousness, subjective emotions, awareness, and adjustment. Furthermore, all decisions made can be understood due to the simple representation of repository as rules. Finally, RULES-IT performance will be benchmarked with six different methods and compared with its predecessors to see the effect of transferring rules in the learning process, and to prove how RULES-IT actually solved the shortcoming of current incremental CA in addition to its improvement in the total performance.
文摘In this paper, a new covering algorithm called FCV1 is presented. FCV1 comprises two algorithms, one of which is able to fast search for a partial rule and exclude the larg portion of negative examples, the other algorithm incorporates the more optimized greedy set-covering algorithm, and runs on a small portion of training examples. Hence,the training process of FCV1 is much faster than that of AQ15.