期刊文献+
共找到1,230篇文章
< 1 2 62 >
每页显示 20 50 100
Self-learning Fuzzy Controllers Based On a Real-time Reinforcement Genetic Algorithm
1
作者 方建安 苗清影 +1 位作者 郭钊侠 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第2期19-22,共4页
This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globall... This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result. 展开更多
关键词 fuzzy controller self-learning REAL time reinforcement genetic algorithm
下载PDF
SELF-LEARNING FUZZY CONTROL RULES USING GENETIC ALGORITHMS
2
作者 方建安 邵世煌 《Journal of China Textile University(English Edition)》 EI CAS 1995年第1期7-13,共7页
This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the ... This papcr presents a new genetic algorithms(GAs)-based method for self-learniag fuzzy control rules. An improved GA is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. The dynamics of the controlled system is unknown to the GA. The only information for evaluating performance is a failure signal indicating that the controlled system is out of control. We compare its performance with that of other learning methods for the same problem. We also examine the ability of the algorithm to adapt to changing conditions. Simulation results show that such an approach for self-learning fuzzy control rules is both effective and robust. 展开更多
关键词 genetic algorithm SELF-learning fuzzy control.
下载PDF
Calculation of impact factor of vibrator oscillation in offset printing based on fuzzy controller and genetic algorithm
3
作者 初红艳 Yang Junjing Cai Ligang 《High Technology Letters》 EI CAS 2015年第1期15-21,共7页
In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by t... In the inking system of an offset printing press,a vibrator roller distributes ink not only in the circumferential direction but also in the axial direction.In the control process,if ink amount is determined only by the dot area coverage without considering the impact of vibrator roller's oscillation,the printing colour quality will be reduced.This paper describes a method of calculating the impact factor of vibrator roller' s oscillation.First,the oscillation performance is analyzed and sample data of impact factor is got.Then,a fuzzy controller used for the calculation of the impact factor is designed,and genetic algorithm is used to optimize membership functions and obtain the fuzzy control rules automatically.This fuzzy controller can be used to calculate impact factors for any printing condition,and the impact factors can be used for ink amount control in printing process and it is important for higher printing colour quality and lowering ink and paper waste. 展开更多
关键词 offset printing colour quality control impact factor fuzzy control genetic algorithm
下载PDF
ADAPTIVE GENETIC ALGORITHM BASED ON SIX FUZZY LOGIC CONTROLLERS 被引量:3
4
作者 朱力立 张焕春 经亚枝 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2003年第2期230-235,共6页
The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimiz... The performance of genetic algorithm(GA) is determined by the capability of search and optimization for satisfactory solutions. The new adaptive genetic algorithm(AGA) is built for inducing suitable search and optimization relationship. The use of six fuzzy logic controllers(6FLCs) is proposed for dynamic control genetic operating parameters of a symbolic-coded GA. This paper uses AGA based on 6FLCs to deal with the travelling salesman problem (TSP). Experimental results show that AGA based on 6FLCs is more efficient than a standard GA in solving combinatorial optimization problems similar to TSP. 展开更多
关键词 adaptive genetic algorithm fuzzy controller dynamic parameters control TSP
下载PDF
A Genetic Based Fuzzy Q-Learning Flow Controller for High-Speed Networks 被引量:2
5
作者 Xin LI Yuanwei JING +1 位作者 Nan JIANG Siying ZHANG 《International Journal of Communications, Network and System Sciences》 2009年第1期84-89,共6页
For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete ... For the congestion problems in high-speed networks, a genetic based fuzzy Q-learning flow controller is proposed. Because of the uncertainties and highly time-varying, it is not easy to accurately obtain the complete information for high-speed networks. In this case, the Q-learning, which is independent of mathematic model, and prior-knowledge, has good performance. The fuzzy inference is introduced in order to facilitate generalization in large state space, and the genetic operators are used to obtain the consequent parts of fuzzy rules. Simulation results show that the proposed controller can learn to take the best action to regulate source flow with the features of high throughput and low packet loss ratio, and can avoid the occurrence of congestion effectively. 展开更多
关键词 HIGH-SPEED Network Flow Control fuzzy Q-learning genetic OPERATOR
下载PDF
Type-2 Fuzzy Logic Controllers Based Genetic Algorithm for the Position Control of DC Motor 被引量:1
6
作者 Mohammed Zeki Al-Faiz Mohammed S. Saleh Ahmed A. Oglah 《Intelligent Control and Automation》 2013年第1期108-113,共6页
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ... Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme. 展开更多
关键词 Type-2 fuzzy LOGIC controller genetic algorithm DC MOTOR
下载PDF
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
7
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
下载PDF
A New Fuzzy Adaptive Genetic Algorithm 被引量:6
8
作者 房磊 张焕春 经亚枝 《Journal of Electronic Science and Technology of China》 2005年第1期57-59,71,共4页
Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while kee... Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution. A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained. 展开更多
关键词 adaptive genetic algorithm fuzzy logic controller dynamic parameters control population sizes
下载PDF
T-S norm FNN controller based on hybrid learning algorithm
9
作者 郭冰洁 李岳明 万磊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第3期27-32,共6页
Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used... Aiming at the problems that fuzzy neural network controller has heavy computation and lag,a T-S norm Fuzzy Neural Network Control based on hybrid learning algorithm was proposed.Immune genetic algorithm (IGA) was used to optimize the parameters of membership functions (MFs) off line,and the neural network was used to adjust the parameters of MFs on line to enhance the response of the controller.Moreover,the latter network was used to adjust the fuzzy rules automatically to reduce the computation of the neural network and improve the robustness and adaptability of the controller,so that the controller can work well ever when the underwater vehicle works in hostile ocean environment.Finally,experiments were carried on " XX" mini autonomous underwater vehicle (min-AUV) in tank.The results showed that this controller has great improvement in response and overshoot,compared with the traditional controllers. 展开更多
关键词 T-S NORM fuzzy neural network UNDERWATER vehicles IMMUNE genetic algorithm Hybrid learning algorithm
下载PDF
Fuzzy Control of Chaotic System with Genetic Algorithm
10
作者 方建安 郭钊侠 邵世煌 《Journal of Donghua University(English Edition)》 EI CAS 2002年第3期58-62,共5页
A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows fo... A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule, and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust. 展开更多
关键词 fuzzy control CHAOTIC system genetic algorithm reinforcement learning.
下载PDF
Neutrosophic Adaptive Clustering Optimization in Genetic Algorithm and Its Application in Cubic Assignment Problem 被引量:1
11
作者 Fangwei Zhang Shihe Xu +2 位作者 Bing Han Liming Zhang Jun Ye 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第3期2211-2226,共16页
In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuri... In optimization theory,the adaptive control of the optimization process is an important goal that people pursue.To solve this problem,this study introduces the idea of neutrosophic decision-making into classical heuristic algorithm,and proposes a novel neutrosophic adaptive clustering optimization thought,which is applied in a novel neutrosophic genetic algorithm(NGA),for example.The main feature of NGA is that the NGA treats the crossover effect as a neutrosophic fuzzy set,the variation ratio as a structural parameter,the crossover effect as a benefit parameter and the variation effect as a cost parameter,and then a neutrosophic fitness function value is created.Finally,a high order assignment problem in warehousemanagement is taken to illustrate the effectiveness of NGA. 展开更多
关键词 Neutrosophic fuzzy set heuristic algorithm genetic algorithm intelligent control warehouse operation
下载PDF
FUZZY GLOBAL SLIDING MODE CONTROL BASED ON GENETIC ALGORITHM AND ITS APPLICATION FOR FLIGHT SIMULATOR SERVO SYSTEM 被引量:14
12
作者 LIU Jinkun HE Yuzhu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第3期13-17,共5页
To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditio... To alleviate the chattering problem, a new type of fuzzy global sliding mode controller (FGSMC) is presented. In this controller, the switching gain is estimated by fuzzy logic system based on the reachable conditions of sliding mode controller(SMC), and genetic algorithm (GA) is used to optimize scaling factor of the switching gain, thus the switch chattering of SMC can be alleviated. Moreover, global sliding mode is realized by designing an exponential dynamic sliding surface. Simulation and real-time application for flight simulator servo system with Lugre friction are given to indicate that the proposed controller can guarantee high robust performance all the time and can alleviate chattering phenomenon effectively. 展开更多
关键词 Sliding mode control Chattering free fuzzy control genetic algorithm Flight simulator
下载PDF
A Fuzzy-based Adaptive Genetic Algorithm and Its Case Study in Chemical Engineering 被引量:5
13
作者 杨传鑫 颜学峰 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2011年第2期299-307,共9页
Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined... Considering that the performance of a genetic algorithm (GA) is affected by many factors and their rela-tionships are complex and hard to be described,a novel fuzzy-based adaptive genetic algorithm (FAGA) combined a new artificial immune system with fuzzy system theory is proposed due to the fact fuzzy theory can describe high complex problems.In FAGA,immune theory is used to improve the performance of selection operation.And,crossover probability and mutation probability are adjusted dynamically by fuzzy inferences,which are developed according to the heuristic fuzzy relationship between algorithm performances and control parameters.The experi-ments show that FAGA can efficiently overcome shortcomings of GA,i.e.,premature and slow,and obtain better results than two typical fuzzy GAs.Finally,FAGA was used for the parameters estimation of reaction kinetics model and the satisfactory result was obtained. 展开更多
关键词 fuzzy logic controller genetic algorithm artificial immune system reaction kinetics model
下载PDF
Fuzzy-second order sliding mode control optimized by genetic algorithm applied in direct torque control of dual star induction motor 被引量:1
14
作者 Ghoulemallah BOUKHALFA Sebti BELKACEM +1 位作者 Abdesselem CHIKHI Moufid BOUHENTALA 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第12期3974-3985,共12页
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame... The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance. 展开更多
关键词 double star induction machine direct torque control fuzzy second order sliding mode control genetic algorithm biogeography based optimization algorithm
下载PDF
Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm 被引量:1
15
作者 崔平远 Yang Guojun 《High Technology Letters》 EI CAS 2001年第1期63-66,共4页
The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update th... The three-layer forward neural networks are used to establish the inverse kinematics models of robot manipulators. The fuzzy genetic algorithm based on the linear scaling of the fitness value is presented to update the weights of neural networks. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the proposed method improves considerably the precision of the inverse kinematics solutions for robot manipulators and guarantees a rapid global convergence and overcomes the drawbacks of SGA and the BP algorithm. 展开更多
关键词 Inverse kinematics Neural networks fuzzy control genetic algorithm Fitness function
下载PDF
Fuzzy controller based on chaos optimal design and its application
16
作者 邹恩 李祥飞 张泰山 《Journal of Central South University of Technology》 EI 2004年第1期98-101,共4页
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy con... In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response. 展开更多
关键词 fuzzy controller chaos algorithm PARAMETER optimal control
下载PDF
LINGUISTIC SELF-ORGANIZING PROCESS CONTROLLER USING GENETIC ALGORITHM
17
作者 方远 丁纪凯 《Journal of China Textile University(English Edition)》 EI CAS 1997年第2期11-15,共5页
A linguistic self-organizing controller using genetic algorithm is presented, whose control policy is able to generate, develop and improve. The scaling factors can be chosen automatically.Optimizing the scaling facto... A linguistic self-organizing controller using genetic algorithm is presented, whose control policy is able to generate, develop and improve. The scaling factors can be chosen automatically.Optimizing the scaling factors by genetic algorithm instead of trial or experimental method which is often used in conventional linguistic self-organizing controller eliminates the drawback of an exhausive search of the GE*GC*GU space by human operator, and also produces the better system response and a set of better control rules. A number of simulations on linear dynamic systems as well as non-linear systems such as second order process with a random disturbance, third order process with time lags and the cart-pole balancing problem etc. are described in this paper, which shows that the controller has strong adaptive properties and gives better performance than that of the conventional linguistic self-organizing controller. 展开更多
关键词 geneticalgorithm fuzzyconlrol linguisticself-organizingcontrol
下载PDF
Fuzzy adaptive learning control network with sigmoid membership function 被引量:1
18
作者 邢杰 Xiao Deyun 《High Technology Letters》 EI CAS 2007年第3期225-229,共5页
To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership functi... To get simpler operation in modified fuzzy adaptive learning control network (FALCON) in some engineering application, sigmoid nonlinear function is employed as a substitute of traditional Gaussian membership function. For making the modified FALCON learning more efficient and stable, a simulated annealing (SA) learning coefficient is introduced into learning algorithm. At first, the basic concepts and main advantages of FALCON were briefly reviewed. Subsequently, the topological structure and nodes operation were illustrated; the gradient-descent learning algorithm with SA learning coefficient was derived; and the distinctions between the archetype and the modification were analyzed. Eventually, the significance and worthiness of the modified FALCON were validated by its application to probability prediction of anode effect in aluminium electrolysis cells. 展开更多
关键词 fuzzy adaptive learning control network (FALCON) topological structure learning algorithm sigmoid function gaussian function simulated annealing (SA)
下载PDF
A New Neuro-Fuzzy Adaptive Genetic Algorithm
19
作者 ZHU Lili ZHANG Huanchun JING Yazhi(Faculty 302,Nanjing University of Aeronautics and Astronautics,Nanjing 210016 China) 《Journal of Electronic Science and Technology of China》 2003年第1期63-68,共6页
Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to contro... Novel neuro-fuzzy techniques are used to dynamically control parameter settings ofgenetic algorithms (GAs).The benchmark routine is an adaptive genetic algorithm (AGA) that uses afuzzy knowledge-based system to control GA parameters.The self-learning ability of the cerebellar modelariculation controller (CMAC) neural network makes it possible for on-line learning the knowledge onGAs throughout the run.Automatically designing and tuning the fuzzy knowledge-base system,neuro-fuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learningmethod.The Results from initial experiments show a Dynamic Parametric AGA system designed by theproposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a widerange of combinatorial optimization. 展开更多
关键词 genetic algorithm fuzzy logic control CMAC neural network adaptive parameter control
下载PDF
Multi-Branch Cable Harness Layout Design Based on Genetic Algorithm with Probabilistic Roadmap Method 被引量:2
20
作者 Yingfeng Zhao Jianhua Liu +1 位作者 Jiangtao Ma Linlin Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第2期68-78,共11页
Current studies on cable harness layouts have mainly focused on cable harness route planning.However,the topological structure of a cable harness is also extremely complex,and the branch structure of the cable harness... Current studies on cable harness layouts have mainly focused on cable harness route planning.However,the topological structure of a cable harness is also extremely complex,and the branch structure of the cable harness can affect the route of the cable harness layout.The topological structure design of the cable harness is a key to such a layout.In this paper,a novel multi-branch cable harness layout design method is presented,which unites the probabilistic roadmap method(PRM)and the genetic algorithm.First,the engineering constraints of the cable harness layout are presented.An obstacle-based PRM used to construct non-interference and near to the surface roadmap is then described.In addition,a new genetic algorithm is proposed,and the algorithm structure of which is redesigned.In addition,the operation probability formula related to fitness is proposed to promote the efficiency of the branch structure design of the cable harness.A prototype system of a cable harness layout design was developed based on the method described in this study,and the method is applied to two scenarios to verify that a quality cable harness layout can be efficiently obtained using the proposed method.In summary,the cable harness layout design method described in this study can be used to quickly design a reasonable topological structure of a cable harness and to search for the corresponding routes of such a harness. 展开更多
关键词 Cable harness layout Probabilistic roadmap method genetic algorithm Hybrid fuzzy control
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部